当前位置: 首页>>代码示例>>Python>>正文


Python networkx.connected_component_subgraphs函数代码示例

本文整理汇总了Python中networkx.connected_component_subgraphs函数的典型用法代码示例。如果您正苦于以下问题:Python connected_component_subgraphs函数的具体用法?Python connected_component_subgraphs怎么用?Python connected_component_subgraphs使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了connected_component_subgraphs函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

def main():
    tempo_dir = "../corpus-local/tempo-txt"
    file_regex = ".*\.txt"

    G = build_graph(tempo_dir, file_regex)
    """
  ccs = nx.clustering(G)
  avg_clust = sum(ccs.values()) / len(ccs)
  """
    print tempo_dir
    print "\tAda " + str(len(G.nodes())) + " node."
    print "\tAda " + str(len(G.edges())) + " edge."
    print "\tClustering coefficient      : " + str(nx.average_clustering(G))
    print "\tAverage shortest path length"
    for g in nx.connected_component_subgraphs(G):
        print "\t\t" + str(nx.average_shortest_path_length(g))

    kompas_dir = "../corpus-local/kompas-txt"
    G = build_graph(kompas_dir, file_regex)
    print kompas_dir
    print "\tAda " + str(len(G.nodes())) + " node."
    print "\tAda " + str(len(G.edges())) + " edge."
    print "\tClustering coefficient      : " + str(nx.average_clustering(G))
    print "\tAverage shortest path length"
    for g in nx.connected_component_subgraphs(G):
        print "\t\t" + str(nx.average_shortest_path_length(g))
开发者ID:barliant,项目名称:krextown,代码行数:26,代码来源:graftempo.py

示例2: zc

def zc(G,list_G1,list_G2,f):#计算z值
    """
    输入参数:原始网络G,不保持连通性置乱网络list_G1,保持连通性置乱网络list_G2,要求网络连通的指标函数名f
    返回:该指标的不保持连通性z值z1,保持连通性z值z2
    """
    list_G_l0 = []; list_G_l1 = []; list_G_l2 = []
    for g in nx.connected_component_subgraphs(G):
        list_G_l0.append(f(g))
    for G1 in list_G1:
        for g1 in nx.connected_component_subgraphs(G1):
            list_G_l1.append(f(g1))#指标值列表
    for G2 in list_G2:
        for g2 in nx.connected_component_subgraphs(G2):
            list_G_l2.append(f(g2))
    #print list_G_l0, list_G_l1, list_G_l2
    G_l0 = np.mean(list_G_l0)
    G_l1 = np.mean(list_G_l1) #求均值 
    G_l2 = np.mean(list_G_l2)
    var_z1 = np.var(list_G_l1) #求方差
    var_z2 = np.var(list_G_l2)
    if var_z1 == 0: #若方差为0,则z值取0
        z1 = 0
    else:
        z1 = (G_l0 - G_l1)/var_z1#z值
    if var_z2 == 0: 
        z2 = 0
    else:
        z2 = (G_l0 - G_l2)/var_z2#z值
    return z1, z2
开发者ID:Wuyanan520,项目名称:nullmodel,代码行数:29,代码来源:neighbor3980.py

示例3: _extract_ccomponents

    def _extract_ccomponents(self, graph, threshold=0, min_size=2):
        # remove all vertices that have a score less then threshold
        cc_list = []

        if self.less_then:
            less_component_graph = graph.copy()
            for v, d in less_component_graph.nodes_iter(data=True):
                if d.get(self.attribute, False):
                    if d[self.attribute] < threshold:
                        less_component_graph.remove_node(v)
            for cc in nx.connected_component_subgraphs(less_component_graph):
                if len(cc) >= min_size:
                    cc_list.append(cc)

        # remove all vertices that have a score more then threshold
        if self.more_than:
            more_component_graph = graph.copy()
            for v, d in more_component_graph.nodes_iter(data=True):
                if d.get(self.attribute, False):
                    if d[self.attribute] >= threshold:
                        more_component_graph.remove_node(v)

            for cc in nx.connected_component_subgraphs(more_component_graph):
                if len(cc) >= min_size:
                    cc_list.append(cc)
        return cc_list
开发者ID:gianlucacorrado,项目名称:EDeN,代码行数:26,代码来源:__init__.py

示例4: _good_k_break

    def _good_k_break(self, old_edges, new_edges):
        """
        Checks that the break does not change chromomsome structure significantly
        """
        MIN_OVLP_SCORE = 0.9
        MAX_K_BREAK = 4
        if len(old_edges) > MAX_K_BREAK:
            return False

        new_adj_graph = self.adj_graph.copy()
        for u, v in old_edges:
            new_adj_graph.remove_edge(u, v)
        for u, v in new_edges:
            new_adj_graph.add_edge(u, v)

        all_nodes = new_adj_graph.nodes()
        old_sets = list(map(lambda g: set(g.nodes()),
                            nx.connected_component_subgraphs(self.adj_graph)))
        new_sets = list(map(lambda g: set(g.nodes()),
                            nx.connected_component_subgraphs(new_adj_graph)))
        if len(old_sets) != len(new_sets):
            return False

        for old_set in old_sets:
            max_overlap = 0
            best_score = 0
            for new_set in new_sets:
                overlap = len(old_set & new_set)
                if overlap > max_overlap:
                    max_overlap = overlap
                    best_score = float(overlap) / len(old_set | new_set)
            if best_score < MIN_OVLP_SCORE:
                return False

        return True
开发者ID:ptdtan,项目名称:Ragout,代码行数:35,代码来源:merge_iters.py

示例5: _extract_ccomponents

    def _extract_ccomponents(self, graph, threshold=0, min_size=2, max_size=20):
        # remove all vertices that have a score less then threshold
        cc_list = []

        if self.less_then:
            less_component_graph = graph.copy()
            for v, d in less_component_graph.nodes_iter(data=True):
                if self.get_attr_from_noded(d):
                    if self.get_attr_from_noded(d) < threshold:
                        less_component_graph.remove_node(v)
            for cc in nx.connected_component_subgraphs(less_component_graph):
                if len(cc) >= min_size and len(cc) <= max_size:
                    cc_list.append(cc)
                if len(cc) > max_size and self.shrink_graphs:
                    cc_list += list(self.enforce_max_size(cc, min_size, max_size))

        # remove all vertices that have a score more then threshold
        if self.more_than:
            more_component_graph = graph.copy()
            for v, d in more_component_graph.nodes_iter(data=True):
                if self.get_attr_from_noded(d):
                    if self.get_attr_from_noded(d) >= threshold:
                        more_component_graph.remove_node(v)

            for cc in nx.connected_component_subgraphs(more_component_graph):
                if len(cc) >= min_size and len(cc) <= max_size:
                    cc_list.append(cc)

                if len(cc) > max_size and self.shrink_graphs:
                    cc_list += list(self.enforce_max_size(cc, min_size, max_size, choose_cut_node=max))

        return cc_list
开发者ID:fabriziocosta,项目名称:GraphLearn,代码行数:32,代码来源:abstractor.py

示例6: printStats

def printStats(filename):
	'''
	Converts json adjacency list into networkx to calculate and print the
	graphs's 
	  - average clustering coefficient
	  - overall clustering coefficient
	  - maximum diameter
	  - average diameter
	  - number of paritions using community.best_parition
	  - modularity of community.best_partition
	'''
	g = makeGraphFromJSON(filename)
	
	print "Average Clustering Coefficient: %f" % nx.average_clustering(g)
	print "Overall Clustering Coefficient: %f" % nx.transitivity(g)
	
	connected_subgraphs = list(nx.connected_component_subgraphs(g))
	largest = max(nx.connected_component_subgraphs(g), key=len)
	print "# Connected Components: %d" % len(connected_subgraphs)
	print "    Maximal Diameter: %d" % nx.diameter(largest)
	print "    Average Diameter: %f" % nx.average_shortest_path_length(largest)

	# Find partition that maximizes modularity using Louvain's algorithm
	part = community.best_partition(g)	
	print "# Paritions: %d" % (max(part.values()) + 1)
	print "Louvain Modularity: %f" % community.modularity(part, g)
开发者ID:azercephi,项目名称:kraftwerk,代码行数:26,代码来源:analyze.py

示例7: get_boundary_for_label

def get_boundary_for_label(data, classifier, num_label, step):
    # See
    # http://en.wikipedia.org/wiki/Postcodes_in_the_United_Kingdom#Operation_and_application
    # for the various divisions.
    t_start = time.time()
    district = data[data[:,0] == num_label, 1:]

    # Align grid to nearest "step". Also grow border by 25 units to
    # to make sure the marching squares can build a full loop.
    x0, y0 = np.floor(district.min(0) / step - 25) * step
    x1, y1 = np.ceil(district.max(0) / step + 25) * step

    # Use KNN to colour a grid that covers the district
    xx, yy = np.mgrid[x0:x1:step, y0:y1:step]
    prediction = classifier.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

    # Split predicted labels into inside/outside
    prediction = (prediction == num_label).astype('u1')

    # We transpose to make reasoning about the lookups easier.
    prediction = prediction.transpose()

    # zero-pad predictions to make sure marching squares creates
    # closed outlines.
    tmp = np.zeros((prediction.shape[0] + 2, prediction.shape[1] + 2), dtype='u1')
    tmp[1:-1,1:-1] = prediction
    prediction = tmp

    outline = networkx.Graph()

    h, w = prediction.shape
    
    for i, j in np.ndindex(h - 1, w - 1):
        # We use tostring() as a cheap, hashable lookup type for the
        # marching squared implementation.

        # Dimension 0 ~ y ~ i, dim 1 ~ x ~ j:
        piter = iter(MARCHING_SQUARE_LOOKUP[prediction[i:i+2,j:j+2].tostring()])

        for rel1, rel2 in zip(piter, piter):
            p1 = int(x0 + step * (j + rel1[0])), int(y0 + step * (i + rel1[1]))
            p2 = int(x0 + step * (j + rel2[0])), int(y0 + step * (i + rel2[1]))

            outline.add_node(p1)
            outline.add_node(p2)
            outline.add_edge(p1, p2)

    # Pick the largest subgraph, other graphs are most likely outliers.
    logging.info(
        "%s: Found %s connected graphs in %.2fs",
        num_label,
        len(networkx.connected_component_subgraphs(outline)),
        time.time() - t_start,
    )
    largest = max(
        networkx.connected_component_subgraphs(outline),
        key=lambda x: x.size()
    )
    return list(shapely.ops.polygonize(largest.edges()))[0]
开发者ID:teh,项目名称:postcode_district_outlines,代码行数:59,代码来源:pc3.py

示例8: get_small_worldness

def get_small_worldness(filename):
  import networkx as nx
  threshold = 0
  f = open(filename[:-4]+'_small_worldness.dat','w')
  for i in range(0,101):
    threshold = float(i)/100
    G = get_threshold_matrix(filename, threshold)
    ER_graph = nx.erdos_renyi_graph(nx.number_of_nodes(G), nx.density(G))

    cluster = nx.average_clustering(G)
    ER_cluster = nx.average_clustering(ER_graph)
    
    transi = nx.transitivity(G)
    ER_transi = nx.transitivity(ER_graph)

    print 'threshold: %f, average cluster coefficient: %f, random nw: %f, transitivity: %f, random nw: %f' %(threshold, cluster, ER_cluster, transi, ER_transi)

    f.write("%f\t%f\t%f" % (threshold, cluster, ER_cluster))
    components = nx.connected_component_subgraphs(G)
    ER_components = nx.connected_component_subgraphs(ER_graph)

    values = []
    ER_values = []
    for i in range(len(components)):
      if nx.number_of_nodes(components[i]) > 1:
        values.append(nx.average_shortest_path_length(components[i]))
    for i in range(len(ER_components)):
      if nx.number_of_nodes(ER_components[i]) > 1:
        ER_values.append(nx.average_shortest_path_length(ER_components[i]))
    if len(values) == 0:
      f.write("\t0.")
    else:
      f.write("\t%f" % (sum(values)/len(values)))

    if len(ER_values) == 0:
      f.write("\t0.")
    else:
      f.write("\t%f" % (sum(ER_values)/len(ER_values)))
    
    f.write("\t%f\t%f" % (transi, ER_transi))  
    
    if (ER_cluster*sum(values)*len(values)*sum(ER_values)*len(ER_values)) >0 :
      S_WS = (cluster/ER_cluster) / ((sum(values)/len(values)) / (sum(ER_values)/len(ER_values)))
    else:
      S_WS = 0.
    if (ER_transi*sum(values)*len(values)*sum(ER_values)*len(ER_values)) >0 :
      S_Delta = (transi/ER_transi) / ((sum(values)/len(values)) / (sum(ER_values)/len(ER_values)))
    else:
      S_Delta = 0.
    
    f.write("\t%f\t%f" % (S_WS, S_Delta))  
    f.write("\n")
    
  f.close()  
  print "1:threshold 2:cluster-coefficient 3:random-cluster-coefficient 4:shortest-pathlength 5:random-shortest-pathlength 6:transitivity 7:random-transitivity 8:S-Watts-Strogatz 9:S-transitivity" 
开发者ID:sheyma,项目名称:lab_rot_berlin,代码行数:55,代码来源:threshold_matrix.py

示例9: hemst

def hemst(G, k):
    nc = 1
    mst = G
    point_set = {}
    while nc != k:
        nc = 1
        mst = nx.minimum_spanning_tree(mst)
        weights = np.array([attrs['weight'] for _,_,attrs in mst.edges(data=True)])
        mean_w = weights.mean()
        std = weights.std()

        for a,b,attrs in mst.edges(data=True):
            w = attrs['weight']
            if w > mean_w + std:
                mst.remove_edge(a,b)
                nc+=1

        if nc < k:
            while nc != k:
                remove_longest_edge(mst)
                nc+=1
            break

        if nc > k:
            sG = nx.connected_component_subgraphs(mst)
            centroid_nodes = []
            for g in sG:
                cl = nx.closeness_centrality(g)
                sorted_set_nodes = sorted(cl.items(), key=lambda a: a[1])
                closest_to_c = sorted_set_nodes[0][0]

                point_set[closest_to_c] = g.nodes()
                for p, _ in sorted_set_nodes[1:]:
                    if p in point_set:
                        point_set[closest_to_c]+= point_set[p]

                centroid_nodes.append(closest_to_c)

            edges=itertools.combinations(centroid_nodes,2)
            mst.clear()
            mst.add_nodes_from(centroid_nodes)
            mst.add_edges_from(edges)
            for u,v in mst.edges():
                weight = G.get_edge_data(u,v)["weight"]
                nx.set_edge_attributes(mst, "weight", {(u,v):weight})
                
    sG = nx.connected_component_subgraphs(mst)
    if point_set:
        for g in sG:
            for node in g.nodes():
                if node in point_set:
                    g.add_nodes_from(point_set[node])

    return sG
开发者ID:BugBuster,项目名称:face-tracking,代码行数:54,代码来源:mstclustering.py

示例10: get_small_worldness

def get_small_worldness(G, thr):
	f = open(out_prfx + 'small_worldness.dat', 'a')
	g = open(out_prfx + 'cc_trans_ER.dat', 'a')
	#g.write('r(thre.)\t\cc_A\tcc_ER\ttran_A\ttran_ER\n')
	ER_graph = nx.erdos_renyi_graph(nx.number_of_nodes(G), nx.density(G))
	# erdos-renyi, binomial random graph generator ...(N,D:density)	
	cluster = nx.average_clustering(G)   # clustering coef. of whole network
	ER_cluster = nx.average_clustering(ER_graph)	#cc of random graph
	
	transi = nx.transitivity(G)
	ER_transi = nx.transitivity(ER_graph)

	g.write("%f\t%f\t%f\t%f\t%f\n" % (thr, cluster,ER_cluster,transi,ER_transi ))
	
	f.write("%f\t%f\t%f" % (thr, cluster, ER_cluster))
	components = nx.connected_component_subgraphs(G)
	ER_components = nx.connected_component_subgraphs(ER_graph)

	values = []
	ER_values = []
	for i in range(len(components)):
		if nx.number_of_nodes(components[i]) > 1:
			values.append(nx.average_shortest_path_length(components[i]))
	for i in range(len(ER_components)):
		if nx.number_of_nodes(ER_components[i]) > 1:
			ER_values.append(nx.average_shortest_path_length(ER_components[i]))
	if len(values) == 0:
		f.write("\t0.")
	else:
		f.write("\t%f" % (sum(values)/len(values))) # pathlenght

	if len(ER_values) == 0:
		f.write("\t0.")
	else:
		f.write("\t%f" % (sum(ER_values)/len(ER_values)))

	f.write("\t%f\t%f" % (transi, ER_transi))  

	if (ER_cluster*sum(values)*len(values)*sum(ER_values)*len(ER_values)) >0 :
		S_WS = (cluster/ER_cluster) / ((sum(values)/len(values)) / (sum(ER_values)/len(ER_values)))  
	else:
		S_WS = 0.
	if (ER_transi*sum(values)*len(values)*sum(ER_values)*len(ER_values)) >0 :
		S_Delta = (transi/ER_transi) / ((sum(values)/len(values)) / (sum(ER_values)/len(ER_values)))
	else:
		S_Delta = 0.

	f.write("\t%f\t%f" % (S_WS, S_Delta)) # S_WS ~ small worldness 
	f.write("\n")

	f.close() 
	g.close()	 
开发者ID:rudimeier,项目名称:MSc_Thesis,代码行数:52,代码来源:sb_randomization.py

示例11: eigenvector_apl

def eigenvector_apl(g, recalculate=False):
    """
    Performs robustness analysis based on eigenvector centrality,
    on the network specified by infile using sequential (recalculate = True)
    or simultaneous (recalculate = False) approach. Returns a list
    with fraction of nodes removed, a list with the corresponding sizes of
    the largest component of the network, and the overall vulnerability
    of the network.
    """

    m = networkx.eigenvector_centrality(g)
    l = sorted(m.items(), key=operator.itemgetter(1), reverse=True)
    x = []
    y = []

    average_path_length = 0.0
    number_of_components = 0
    n = len(g.nodes())

    for sg in networkx.connected_component_subgraphs(g):
        average_path_length += networkx.average_shortest_path_length(sg)
    number_of_components += 1

    average_path_length /= number_of_components
    initial_apl = average_path_length

    r = 0.0
    for i in range(1, n - 1):
        g.remove_node(l.pop(0)[0])
        if recalculate:

            try:
                m = networkx.eigenvector_centrality(g, max_iter=5000)
            except networkx.NetworkXError:
                break

            l = sorted(m.items(), key=operator.itemgetter(1),
                       reverse=True)
        average_path_length = 0.0
        number_of_components = 0

        for sg in networkx.connected_component_subgraphs(g):
            if len(sg.nodes()) > 1:
                average_path_length += networkx.average_shortest_path_length(sg)
            number_of_components += 1

        average_path_length = average_path_length / number_of_components

        x.append(i * 1. / initial_apl)
        r += average_path_length * 1. / initial_apl
        y.append(average_path_length * 1. / initial_apl)
    return x, y, r / initial_apl
开发者ID:computational-center,项目名称:complexNetworksMeasurements,代码行数:52,代码来源:robustness2.py

示例12: process_network

def process_network(G, namespace):
    print 'Nodes:', len(G)
    print 'Edges:', G.number_of_edges()
    if namespace.clustering_coefficient:
        print 'Clustering Coefficient:', nx.average_clustering(G)
    if namespace.components:
        components = nx.connected_component_subgraphs(G)
        print 'Number of Components:', len(components)
        isles = [c for c in components if len(c) == 1]
        print 'Isles:', len(isles)
        print 'Largest Component Size:', len(components[0])
    else: components = None
    if namespace.cpl:
        if namespace.approximate_cpl:
            average_shortest_path_length = approximate_cpl
        else:
            print 'Using full slow CPL'
            average_shortest_path_length = nx.average_shortest_path_length
        if components is None:
            components = nx.connected_component_subgraphs(G)
        for i, g in enumerate(g for g in components if
                float(len(g))/float(len(G)) >
                namespace.component_size):
            print 'CPL %d: (%f)' % (i, float(len(g))/float(len(G)))
            print average_shortest_path_length(g)
    if namespace.assortativity:
        print 'Assortativity: NOT IMPLEMENTED.'
    if namespace.degree_distribution:
        hst = nx.degree_histogram(G)

        plt.subplot(121)
        plt.xscale('log')
        plt.yscale('log')
        plt.title("Degree Distribution")
        plt.ylabel("Occurrencies")
        plt.xlabel("Degree")
        plt.plot(range(len(hst)), hst, marker='+')

        plt.subplot(122)
        ccdf = pynetsym.mathutil.ccdf(hst)
        plt.xscale('log')
        plt.yscale('log')
        plt.title("CCDF Degree Distribution")
        plt.ylabel("$P(X>x)$")
        plt.xlabel("Degree")
        plt.plot(range(len(ccdf)), ccdf, color='red')

        if namespace.degree_distribution_out is None:
            plt.show()
        else:
            plt.save_fig(namespace.degree_distribution_out)
开发者ID:rik0,项目名称:pynetsym,代码行数:51,代码来源:print_metrics.py

示例13: one_girvan_newman

    def one_girvan_newman(self,G):
        def find_best_edge(G0):
            eb = nx.edge_betweenness_centrality(G0)
            eb_il = eb.items()
            eb_il.sort(key=lambda x: x[1], reverse=True)
            return eb_il[0][0]

        num_clusters = len(sorted(nx.connected_component_subgraphs(G),key=len,reverse=True))
        caused_split = False
        while not caused_split:
            G.remove_edge(*find_best_edge(G))
            components = sorted(nx.connected_component_subgraphs(G),key=len,reverse=True)
            if len(components) == num_clusters+1:
                caused_split = True
开发者ID:r-bierman,项目名称:EteRNATree,代码行数:14,代码来源:girvan_newman.py

示例14: rig

def rig(x, y, G, labs=None, res=1e-9):
    """ Compute the RIG metric on all components.

    Parameters
    ----------
    x : pd.Series or array_like
       Vector of nodes and their abundance in sample x
    y : pd.Series or array_like
       Vector of nodes and their abundance in sample y
    G : nx.Graph
       A connected graph of weighted edges

    Returns
    -------
    float :
       Distance between sample x and sample y

    Note
    ----
    If x or y is None, then 1 will be added to the total distance.
    If they are both None, then the distance will be zero.

    """
    if labs is not None:
        x = pd.Series(x, index=labs)
        y = pd.Series(y, index=labs)

    cost = 0
    _G = copy.deepcopy(G)
    # This converts all of the weights to integers
    for u, v, d in _G.edges(data=True):
        d["weight"] = int(d["weight"] / res)

    # This calculates the largest edge set to offset the insertion cost.
    weights = []
    for comp in nx.connected_component_subgraphs(_G):
        edges = list(comp.edges(data="weight"))
        if len(edges) > 0:
            weights.append(sum(list(zip(*edges))[2]))
    maxW = max(weights) + 1

    for comp in nx.connected_component_subgraphs(_G):
        nodes = set(comp.nodes())
        subx = x[nodes & set(x.keys())]
        suby = y[nodes & set(y.keys())]

    c = rig_component(comp, subx, suby, maxW)
    cost += c
    return (cost) * res
开发者ID:mortonjt,项目名称:chemifrac,代码行数:49,代码来源:rig.py

示例15: _plot_graphs

 def _plot_graphs(self):
     self.f,self.ax = plt.subplots(len(self.transition['all']),4,figsize=(14,10)) # first col motion , second distance
     self.f.suptitle('Scene : '+str(self.scene), fontsize=20)
     for feature in [0,2]:
         # plot the different graphs of motion and distance
         for sub,T in enumerate(self.transition['all']):
             plt.sca(self.ax[sub,feature])
             print 'plotting graph : '+str(sub+1)+' from '+str(len(self.transition['all']))
             if feature == 0: 
                 if T not in self.transition['motion']:
                     for i in self.transition['motion']:
                         if i<T: t=i
                 else: t=T
                 G=self.G_motion[t]['graph']
             elif feature == 2: 
                 if T not in self.transition['touch']:
                     for i in self.transition['touch']:
                         if i<T: t=i
                 else: t=T
                 G=self.G_touch[t]['graph']
             # layout graphs with positions using graphviz neato
             pos=nx.graphviz_layout(G,prog="neato")
             # color nodes the same in each connected subgraph
             C=nx.connected_component_subgraphs(G)
             cK = 0
             for i in C:  cK += 1
             C=nx.connected_component_subgraphs(G)
             colors = np.linspace(.2,.6,cK)
             for count,g in enumerate(C):
                 c=[colors[count]]*nx.number_of_nodes(g) # same color...
                 nx.draw(g,pos,node_size=80,node_color=c,vmin=0.0,vmax=1.0,with_labels=False)
                 #nx.draw_networkx_edges(g,pos, with_labels=False, edge_color=c[0], width=6.0, alpha=0.5)
             nx.draw_networkx_nodes(self.G,pos, node_color='b', node_size=100, alpha=1)
             nx.draw_networkx_nodes(self.G,pos, nodelist=['G'], node_color='r', node_size=100, alpha=1)
             nx.draw_networkx_nodes(self.G,pos, nodelist=[str(self.m_obj)], node_color='c', node_size=100, alpha=1)
             nx.draw_networkx_edges(G,pos, alpha=0.8)
             #nx.draw(G)  # networkx draw()
             self.ax[sub,feature].axis('on')
             self.ax[sub,feature].axis('equal')
             plt.tick_params(axis='x',which='both',bottom='off',top='off',labelbottom='off')
             plt.tick_params(axis='y',which='both',right='off',left='off',labelleft='off')
             if feature == 0:
                 self.ax[sub,feature].set_ylabel('frame : '+str(T))
                 if sub == 0:
                     self.ax[sub,feature].set_title('motion')
             if feature == 2:
                 self.ax[sub,feature].set_ylabel('frame : '+str(T))
                 if sub == 0:
                     self.ax[sub,feature].set_title('connectivity')
开发者ID:OMARI1988,项目名称:robot_simulation,代码行数:49,代码来源:Learn7.py


注:本文中的networkx.connected_component_subgraphs函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。