本文整理汇总了Python中network.network函数的典型用法代码示例。如果您正苦于以下问题:Python network函数的具体用法?Python network怎么用?Python network使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了network函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
# Load data files
nRows_iris = 150
nColumns_iris = 5
num_epoch_iris = 1
learning_rate_iris = .5
nRows_diabetes = 768
nColumns_diabetes = 9
num_epoch_diabetes = 1
learning_rate_diabetes = .5
iris = lf.load_file("iris.csv", nRows_iris, nColumns_iris)
diabetes = lf.load_file("diabetes.data", nRows_diabetes, nColumns_diabetes)
# Collect target data before it is normalized
iris_targets = []
diabetes_targets = []
for row in range(nRows_iris):
iris_targets.append(iris[row][nColumns_iris - 1])
for row in range(nRows_diabetes):
diabetes_targets.append(diabetes[row][nColumns_diabetes - 1])
# Normalize data files
iris = preprocessing.normalize(iris)
diabetes = preprocessing.normalize(diabetes)
# Run Iris
iris_num_layers_array = [1, 3] # Length is num_layers, each element is num_nodes
for i in range(num_epoch_iris):
np.random.shuffle(iris)
iris_net = net.network(iris_num_layers_array, nRows_iris, nColumns_iris, iris, "Iris", learning_rate_iris)
iris_net.run_network()
iris_net.generate_guesses()
iris_net.update_weights()
iris_net.print_accuracy(iris_targets)
if learning_rate_iris > .1:
learning_rate_iris -= .001
# Run Diabetes
diabetes_num_layers_array = [1, 2]
for i in range(num_epoch_diabetes):
np.random.shuffle(diabetes)
diabetes_net = net.network(diabetes_num_layers_array, nRows_diabetes, nColumns_diabetes, diabetes, "Diabetes", learning_rate_diabetes)
diabetes_net.run_network()
diabetes_net.generate_guesses()
diabetes_net.update_weights()
diabetes_net.print_accuracy(diabetes_targets)
if learning_rate_diabetes > .1:
learning_rate_diabetes -= .001
示例2: __init__
def __init__(self,ip,mac):
self.myip=ip
self.mymac=mac
self.tools=tools()
self.mem=memory()
self.network=network()
self.replyTimeout=20
示例3: main
def main():
#data_input = get_pix_img_in_list("test.png")
#data_input = get_pix_img_in_list("a.bmp")
#data_input = get_pix_img_in_list("a.png")
#test and
data_input = [[0, 0], [0, 1], [1, 0], [1, 1]]
data_output = [0, 0, 0, 1]
net = network.network(2, 0.1)# 0,001 > x > 0,01
i = 0
while i < 2800:
#net.train(data_input, ord(data_output))
net.train(data_input[0], data_output[0])
net.train(data_input[1], data_output[1])
net.train(data_input[2], data_output[2])
net.train(data_input[3], data_output[3])
i = i + 1
print("##### test ##### ")
net.test(data_input[0])
net.test(data_input[1])
net.test(data_input[2])
net.test(data_input[3])
示例4: __init__
def __init__(self,ip,mac):
self.myip=ip
self.mymac=mac
self.tools=tools()
self.mem=memory()
self.ruleconstructor=ruleconstructor()
self.recv_target=None
self.sent_target=None
self.network=network()
示例5: network_query
def network_query(self, query_msg, source):
with self.lock:
net = network(query_msg.address, query_msg.netmask)
if net.key() in self.networks:
net = self.networks[net.key()]
if net.root:
switch = net.switch_name()
msg = message.NetworkReplyMessage(query_msg.address, query_msg.netmask, switch)
self.topology.send_message(msg, source)
示例6: __init__
def __init__(self,url):
self.connection=docker.Client(base_url=url)
if os.path.isdir("/etc/config"):
pass
else:
utils.execute("mkdir /etc/config")
self.path="/etc/config/"
self.netpath="/etc/network/"
self.net=network.network()
示例7: create_network
def create_network(self, address, netmask, name_suffix=""):
print "Creating network ", address, ":", netmask
net = network(address, netmask, name_suffix, self)
if net.key() not in self.networks:
net.start()
net.root = True
self.networks[net.key()] = net
msg = message.NetworkQueryMessage(address, netmask)
self.topology.broadcast(msg)
示例8: network_reply
def network_reply(self, reply_msg, source):
addr = self.topology.address_of_id(source)
if addr is not None:
with self.lock:
net = network(reply_msg.address, reply_msg.netmask)
if net.key() in self.networks:
net = self.networks[net.key()]
net.root = False
net.root_id = source
net.reattach_containers()
net.wire(addr, reply_msg.switch)
示例9: __init__
def __init__( self ):
self.lib_version = '1.0.0'
self.api_key = None
self.api_private = None
self.base_url = 'https://rest.quiubas.com'
self.version = '1.0'
self.network = network( self )
self.balance = balance( self )
self.callback = callback( self )
self.keywords = keywords( self )
self.sms = sms( self )
示例10: main
def main():
'''
Main method:
Here I read the input, and for
'''
net = network()
n = int(input())
inputX = []
inputY = []
outputs = []
totalError = 0
for i in range(n):
inp = [int(x) for x in raw_input().split(' ')]
inputX.append(inp[0])
inputY.append(inp[1])
outputs.append(inp[2])
cont = 0
# Each loop is an epoch.
# While there isn't a set of weights on the neural network with error less than 0.4 the loop doesnt break.
for currentOrder in permutations(range(n)):
outs = []
for i in currentOrder:
outs.append(net.getOutput(inputX[i], inputY[i])) # Calculating the output
net.updateWeights(inputX[i], inputY[i], outputs[i]) # Updating the weights of the Neural network
totalError = 0
goingToBreak = True
for i in currentOrder:
totalError += (outputs[i]-outs[i])**2
if abs(outputs[i]-outs[i]) > 0.4:
goingToBreak = False
if goingToBreak:
break
if cont % 10 == 0:
print('Epoch ' + str(cont))
print('Squared Error: ' + str(totalError) + '\n')
cont += 1
delta = 0
for i in range(n):
o = net.getOutput(inputX[i], inputY[i])
delta += abs(outputs[i]-o)
print('Exemplar: ' + str(inputX[i]) + ' ' + str(inputY[i]) + ' ' + str(outputs[i]) + ' Neural Network Output: ' + str(o))
print('\ndelta: ' + str(delta/8))
示例11: move_container_to_network
def move_container_to_network(self, container, address, netmask, network_name_suffix = ''):
print 'Moving container ', container, ' to network: ', address, ':', netmask
if container not in self.containers:
raise InvalidOperation("Don't have container + " + container + ".")
with self.lock:
net = network(address, netmask)
if net.key() not in self.networks:
self.create_network(address, netmask, network_name_suffix)
net = self.networks[net.key()]
if self.containers[container].network_key in self.networks:
self.networks[container.network_key].detach_container(container)
if not self.networks[container.network_key].used:
self.networks[container.network_key].stop()
del self.networks[container.network_key]
net.attach_container(self.containers[container])
示例12: __init__
def __init__(self, parent):
self.parent = parent
self.device = parent.device
self.data_layer = parent.data_layer
self.apps = parent.apps
self.marionette = parent.marionette
self.actions = Actions(self.marionette)
# Globals used for reporting ...
self.errNum = 0
self.start_time = time.time()
# Get run details from the OS.
self.general = general(self)
self.test_num = parent.__module__[5:]
self.app = app(self)
self.date_and_time = date_and_time(self)
self.debug = debug(self)
self.element = element(self)
self.home = home(self)
self.iframe = iframe(self)
self.messages = Messages(self)
self.network = network(self)
self.reporting = reporting(self)
self.statusbar = statusbar(self)
self.test = test(self)
self.visual_tests = visualtests(self)
self.marionette.set_search_timeout(10000)
self.marionette.set_script_timeout(10000)
elapsed = time.time() - self.start_time
elapsed = round(elapsed, 0)
elapsed = str(datetime.timedelta(seconds=elapsed))
self.reporting.debug("Initializing 'UTILS' took {} seconds.".format(elapsed))
current_lang = parent.data_layer.get_setting("language.current").split('-')[0]
self.reporting.info("Current Toolkit language: [{}]".format(current_lang))
try:
btn = self.marionette.find_element('id', 'charge-warning-ok')
btn.tap()
except:
pass
parent.data_layer.set_setting('screen.automatic-brightness', True)
示例13: test_tfnet
def test_tfnet(task, projdir, modelname, sessionname, dataset, taskargs, patchflag=False, patchsize=100):
# FOLDER VARIABLES
sessiondir = projdir + "nets/" + modelname + "_" + sessionname + "/"
resultsdir = projdir + "testresults/" + modelname + "_" + sessionname + "/"
datadir = projdir + "data/" + dataset
test_dir = datadir + "/testing"
if not os.path.exists(resultsdir):
os.mkdir(resultsdir)
# NETWORK INIT
x = tf.placeholder("float", shape=[None, None, None, 3])
# xsize = tf.placeholder(tf.int32, shape=[2])
y_conv = network(x, modelname, taskargs)
taskobj = get_task(task)
sess = tf.Session()
saver = tf.train.Saver()
if os.path.isfile(sessiondir + "checkpoint"):
saver.restore(sess, tf.train.latest_checkpoint(sessiondir))
else:
print "Model not pretrained"
# DATA INIT
det_data, filenames = taskobj.read_testing_sets(test_dir)
testdata = preprocess(det_data.testdata)
# TESTING
outs = []
for j in range(testdata.shape[0]):
print j
res = sess.run([y_conv], feed_dict={x: testdata[j : j + 1]})
outs.append(res[0])
taskobj.validate(outs, det_data.testdata, None, resultsdir, taskargs)
示例14: network
from consts import ZMQ_SERVER_NETWORK, ZMQ_PUBSUB_KV17
from network import network
from helpers import serialize
import zmq
import sys
# Initialize the cached network
sys.stderr.write('Caching networkgraph...')
net = network()
sys.stderr.write('Done!\n')
# Initialize a zeromq context
context = zmq.Context()
# Set up a channel to receive network requests
sys.stderr.write('Setting up a ZeroMQ REP: %s\n' % (ZMQ_SERVER_NETWORK))
client = context.socket(zmq.REP)
client.bind(ZMQ_SERVER_NETWORK)
# Set up a channel to receive KV17 requests
sys.stderr.write('Setting up a ZeroMQ SUB: %s\n' % (ZMQ_PUBSUB_KV17))
subscribe_kv17 = context.socket(zmq.SUB)
subscribe_kv17.connect(ZMQ_PUBSUB_KV17)
subscribe_kv17.setsockopt(zmq.SUBSCRIBE, '')
# Set up a poller
poller = zmq.Poller()
poller.register(client, zmq.POLLIN)
poller.register(subscribe_kv17, zmq.POLLIN)
sys.stderr.write('Ready.\n')
示例15: file
numEpisodes = 100000
batch_size = 64
#if load parameter is passed load a network from a file
if args.load:
print "loading model..."
f = file(args.load, 'rb')
network = cPickle.load(f)
if(network.batch_size):
batch_size = network.batch_size
f.close()
else:
print "building model..."
#use batchsize none now so that we can easily use same network for picking single moves and evaluating batches
network = network(batch_size=None)
print "network size: "+str(network.mem_size.eval())
evaluate_model_single = theano.function(
[input_state],
network.output[0],
givens={
network.input: input_state.dimshuffle('x', 0, 1, 2),
}
)
evaluate_model_batch = theano.function(
[state_batch],
network.output,
givens={
network.input: state_batch,