本文整理汇总了Python中nets.inception.inception_v3函数的典型用法代码示例。如果您正苦于以下问题:Python inception_v3函数的具体用法?Python inception_v3怎么用?Python inception_v3使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了inception_v3函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testNoBatchNormScaleByDefault
def testNoBatchNormScaleByDefault(self):
height, width = 299, 299
num_classes = 1000
inputs = tf.placeholder(tf.float32, (1, height, width, 3))
with slim.arg_scope(inception.inception_v3_arg_scope()):
inception.inception_v3(inputs, num_classes, is_training=False)
self.assertEqual(tf.global_variables('.*/BatchNorm/gamma:0$'), [])
示例2: testRaiseValueErrorWithInvalidDepthMultiplier
def testRaiseValueErrorWithInvalidDepthMultiplier(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
with self.assertRaises(ValueError):
_ = inception.inception_v3(inputs, num_classes, depth_multiplier=-0.1)
with self.assertRaises(ValueError):
_ = inception.inception_v3(inputs, num_classes, depth_multiplier=0.0)
示例3: testBatchNormScale
def testBatchNormScale(self):
height, width = 299, 299
num_classes = 1000
inputs = tf.placeholder(tf.float32, (1, height, width, 3))
with slim.arg_scope(
inception.inception_v3_arg_scope(batch_norm_scale=True)):
inception.inception_v3(inputs, num_classes, is_training=False)
gamma_names = set(
v.op.name for v in tf.global_variables('.*/BatchNorm/gamma:0$'))
self.assertGreater(len(gamma_names), 0)
for v in tf.global_variables('.*/BatchNorm/moving_mean:0$'):
self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)
示例4: testTrainEvalWithReuse
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_v3(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_v3(eval_inputs, num_classes,
is_training=False, reuse=True)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例5: testBuildEndPointsWithDepthMultiplierGreaterThanOne
def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_v3(inputs, num_classes)
endpoint_keys = [key for key in end_points.keys()
if key.startswith('Mixed') or key.startswith('Conv')]
_, end_points_with_multiplier = inception.inception_v3(
inputs, num_classes, scope='depth_multiplied_net',
depth_multiplier=2.0)
for key in endpoint_keys:
original_depth = end_points[key].get_shape().as_list()[3]
new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
self.assertEqual(2.0 * original_depth, new_depth)
示例6: testBuildPreLogitsNetwork
def testBuildPreLogitsNetwork(self):
batch_size = 5
height, width = 299, 299
num_classes = None
inputs = tf.random_uniform((batch_size, height, width, 3))
net, end_points = inception.inception_v3(inputs, num_classes)
self.assertTrue(net.op.name.startswith('InceptionV3/Logits/AvgPool'))
self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 2048])
self.assertFalse('Logits' in end_points)
self.assertFalse('Predictions' in end_points)
示例7: testLogitsNotSqueezed
def testLogitsNotSqueezed(self):
num_classes = 25
images = tf.random_uniform([1, 299, 299, 3])
logits, _ = inception.inception_v3(images,
num_classes=num_classes,
spatial_squeeze=False)
with self.test_session() as sess:
tf.global_variables_initializer().run()
logits_out = sess.run(logits)
self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
示例8: testHalfSizeImages
def testHalfSizeImages(self):
batch_size = 5
height, width = 150, 150
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, end_points = inception.inception_v3(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV3/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_7c']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 3, 3, 2048])
示例9: testEvaluation
def testEvaluation(self):
batch_size = 2
height, width = 299, 299
num_classes = 1000
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = inception.inception_v3(eval_inputs, num_classes,
is_training=False)
predictions = tf.argmax(logits, 1)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (batch_size,))
示例10: testUnknowBatchSize
def testUnknowBatchSize(self):
batch_size = 1
height, width = 299, 299
num_classes = 1000
inputs = tf.placeholder(tf.float32, (None, height, width, 3))
logits, _ = inception.inception_v3(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV3/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, num_classes])
images = tf.random_uniform((batch_size, height, width, 3))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(logits, {inputs: images.eval()})
self.assertEquals(output.shape, (batch_size, num_classes))
示例11: testUnknownImageShape
def testUnknownImageShape(self):
tf.reset_default_graph()
batch_size = 2
height, width = 299, 299
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception.inception_v3(inputs, num_classes)
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_7c']
feed_dict = {inputs: input_np}
tf.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
示例12: main
def main():
"""
You can also run these commands manually to generate the pb file
1. git clone https://github.com/tensorflow/models.git
2. export PYTHONPATH=Path_to_your_model_folder
3. python alexnet.py
"""
tf.set_random_seed(1)
height, width = 299, 299
num_classes = 1000
inputs = tf.Variable(tf.random_uniform((1, height, width, 3)), name='input')
inputs = tf.identity(inputs, "input_node")
net, end_points = inception.inception_v3(inputs, num_classes,is_training=False)
print("nodes in the graph")
for n in end_points:
print(n + " => " + str(end_points[n]))
net_outputs = map(lambda x: tf.get_default_graph().get_tensor_by_name(x), argv[2].split(','))
run_model(net_outputs, argv[1], 'InceptionV3', argv[3] == 'True')
示例13: testBuildEndPoints
def testBuildEndPoints(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_v3(inputs, num_classes)
self.assertTrue('Logits' in end_points)
logits = end_points['Logits']
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('AuxLogits' in end_points)
aux_logits = end_points['AuxLogits']
self.assertListEqual(aux_logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('Mixed_7c' in end_points)
pre_pool = end_points['Mixed_7c']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 8, 8, 2048])
self.assertTrue('PreLogits' in end_points)
pre_logits = end_points['PreLogits']
self.assertListEqual(pre_logits.get_shape().as_list(),
[batch_size, 1, 1, 2048])
示例14: create
def create(self, images, num_classes, is_training):
"""See baseclass."""
with slim.arg_scope(inception.inception_v3_arg_scope()):
_, endpoints = inception.inception_v3(
images, num_classes, create_aux_logits=False, is_training=is_training)
return endpoints