当前位置: 首页>>代码示例>>Python>>正文


Python SpikeTrain.array_annotate方法代码示例

本文整理汇总了Python中neo.core.SpikeTrain.array_annotate方法的典型用法代码示例。如果您正苦于以下问题:Python SpikeTrain.array_annotate方法的具体用法?Python SpikeTrain.array_annotate怎么用?Python SpikeTrain.array_annotate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neo.core.SpikeTrain的用法示例。


在下文中一共展示了SpikeTrain.array_annotate方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: generate_one_simple_segment

# 需要导入模块: from neo.core import SpikeTrain [as 别名]
# 或者: from neo.core.SpikeTrain import array_annotate [as 别名]
def generate_one_simple_segment(seg_name='segment 0', supported_objects=[], nb_analogsignal=4,
                                t_start=0. * pq.s, sampling_rate=10 * pq.kHz, duration=6. * pq.s,

                                nb_spiketrain=6, spikerate_range=[.5 * pq.Hz, 12 * pq.Hz],

                                event_types={'stim': ['a', 'b', 'c', 'd'],
                                             'enter_zone': ['one', 'two'],
                                             'color': ['black', 'yellow', 'green'], },
                                event_size_range=[5, 20],

                                epoch_types={'animal state': ['Sleep', 'Freeze', 'Escape'],
                                             'light': ['dark', 'lighted']},
                                epoch_duration_range=[.5, 3.],
                                # this should be multiplied by pq.s, no?

                                array_annotations={'valid': np.array([True, False]),
                                                   'number': np.array(range(5))}

                                ):
    if supported_objects and Segment not in supported_objects:
        raise ValueError('Segment must be in supported_objects')
    seg = Segment(name=seg_name)
    if AnalogSignal in supported_objects:
        for a in range(nb_analogsignal):
            anasig = AnalogSignal(rand(int(sampling_rate * duration)), sampling_rate=sampling_rate,
                                  t_start=t_start, units=pq.mV, channel_index=a,
                                  name='sig %d for segment %s' % (a, seg.name))
            seg.analogsignals.append(anasig)

    if SpikeTrain in supported_objects:
        for s in range(nb_spiketrain):
            spikerate = rand() * np.diff(spikerate_range)
            spikerate += spikerate_range[0].magnitude
            # spikedata = rand(int((spikerate*duration).simplified))*duration
            # sptr = SpikeTrain(spikedata,
            #                  t_start=t_start, t_stop=t_start+duration)
            #                  #, name = 'spiketrain %d'%s)
            spikes = rand(int((spikerate * duration).simplified))
            spikes.sort()  # spikes are supposed to be an ascending sequence
            sptr = SpikeTrain(spikes * duration, t_start=t_start, t_stop=t_start + duration)
            sptr.annotations['channel_index'] = s
            # Randomly generate array_annotations from given options
            arr_ann = {key: value[(rand(len(spikes)) * len(value)).astype('i')] for (key, value) in
                       array_annotations.items()}
            sptr.array_annotate(**arr_ann)
            seg.spiketrains.append(sptr)

    if Event in supported_objects:
        for name, labels in event_types.items():
            evt_size = rand() * np.diff(event_size_range)
            evt_size += event_size_range[0]
            evt_size = int(evt_size)
            labels = np.array(labels, dtype='S')
            labels = labels[(rand(evt_size) * len(labels)).astype('i')]
            evt = Event(times=rand(evt_size) * duration, labels=labels)
            # Randomly generate array_annotations from given options
            arr_ann = {key: value[(rand(evt_size) * len(value)).astype('i')] for (key, value) in
                       array_annotations.items()}
            evt.array_annotate(**arr_ann)
            seg.events.append(evt)

    if Epoch in supported_objects:
        for name, labels in epoch_types.items():
            t = 0
            times = []
            durations = []
            while t < duration:
                times.append(t)
                dur = rand() * (epoch_duration_range[1] - epoch_duration_range[0])
                dur += epoch_duration_range[0]
                durations.append(dur)
                t = t + dur
            labels = np.array(labels, dtype='S')
            labels = labels[(rand(len(times)) * len(labels)).astype('i')]
            assert len(times) == len(durations)
            assert len(times) == len(labels)
            epc = Epoch(times=pq.Quantity(times, units=pq.s),
                        durations=pq.Quantity(durations, units=pq.s),
                        labels=labels,)
            assert epc.times.dtype == 'float'
            # Randomly generate array_annotations from given options
            arr_ann = {key: value[(rand(len(times)) * len(value)).astype('i')] for (key, value) in
                       array_annotations.items()}
            epc.array_annotate(**arr_ann)
            seg.epochs.append(epc)

    # TODO : Spike, Event

    seg.create_many_to_one_relationship()
    return seg
开发者ID:INM-6,项目名称:python-neo,代码行数:92,代码来源:generate_datasets.py


注:本文中的neo.core.SpikeTrain.array_annotate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。