当前位置: 首页>>代码示例>>Python>>正文


Python Vocabulary.transform_to方法代码示例

本文整理汇总了Python中nengo.spa.Vocabulary.transform_to方法的典型用法代码示例。如果您正苦于以下问题:Python Vocabulary.transform_to方法的具体用法?Python Vocabulary.transform_to怎么用?Python Vocabulary.transform_to使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nengo.spa.Vocabulary的用法示例。


在下文中一共展示了Vocabulary.transform_to方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_transform

# 需要导入模块: from nengo.spa import Vocabulary [as 别名]
# 或者: from nengo.spa.Vocabulary import transform_to [as 别名]
def test_transform(rng):
    v1 = Vocabulary(32, rng=rng)
    v2 = Vocabulary(64, rng=rng)
    A = v1.parse('A')
    B = v1.parse('B')
    C = v1.parse('C')

    # Test transform from v1 to v2 (full vocbulary)
    # Expected: np.dot(t, A.v) ~= v2.parse('A')
    # Expected: np.dot(t, B.v) ~= v2.parse('B')
    # Expected: np.dot(t, C.v) ~= v2.parse('C')
    t = v1.transform_to(v2)

    assert v2.parse('A').compare(np.dot(t, A.v)) > 0.95
    assert v2.parse('C+B').compare(np.dot(t, C.v + B.v)) > 0.9

    # Test transform from v1 to v2 (only 'A' and 'B')
    t = v1.transform_to(v2, keys=['A', 'B'])

    assert v2.parse('A').compare(np.dot(t, A.v)) > 0.95
    assert v2.parse('B').compare(np.dot(t, C.v + B.v)) > 0.95

    # Test transform_to when either vocabulary is read-only
    v1.parse('D')
    v2.parse('E')

    # When both are read-only, transform_to shouldn't add any new items to
    # either and the transform should be using keys that are the intersection
    # of both vocabularies
    v1.readonly = True
    v2.readonly = True

    t = v1.transform_to(v2)

    assert v1.keys == ['A', 'B', 'C', 'D']
    assert v2.keys == ['A', 'B', 'C', 'E']

    # When one is read-only, transform_to should add any new items to the non
    # read-only vocabulary
    v1.readonly = False
    v2.readonly = True

    t = v1.transform_to(v2)

    assert v1.keys == ['A', 'B', 'C', 'D', 'E']
    assert v2.keys == ['A', 'B', 'C', 'E']

    # When one is read-only, transform_to should add any new items to the non
    # read-only vocabulary
    v1.readonly = True
    v2.readonly = False

    t = v1.transform_to(v2)

    assert v1.keys == ['A', 'B', 'C', 'D', 'E']
    assert v2.keys == ['A', 'B', 'C', 'E', 'D']
开发者ID:4n6strider,项目名称:nengo,代码行数:58,代码来源:test_vocabulary.py

示例2: test_transform

# 需要导入模块: from nengo.spa import Vocabulary [as 别名]
# 或者: from nengo.spa.Vocabulary import transform_to [as 别名]
def test_transform(rng):
    v1 = Vocabulary(32, rng=rng)
    v2 = Vocabulary(64, rng=rng)
    A = v1.parse('A')
    B = v1.parse('B')
    C = v1.parse('C')
    t = v1.transform_to(v2)

    assert v2.parse('A').compare(np.dot(t, A.v)) > 0.95
    assert v2.parse('C+B').compare(np.dot(t, C.v + B.v)) > 0.9

    t = v1.transform_to(v2, keys=['A', 'B'])

    assert v2.parse('A').compare(np.dot(t, A.v)) > 0.95
    assert v2.parse('B').compare(np.dot(t, B.v)) > 0.95
开发者ID:CamZHU,项目名称:nengo,代码行数:17,代码来源:test_vocabulary.py

示例3: test_transform

# 需要导入模块: from nengo.spa import Vocabulary [as 别名]
# 或者: from nengo.spa.Vocabulary import transform_to [as 别名]
def test_transform():
    v1 = Vocabulary(32, rng=np.random.RandomState(7))
    v2 = Vocabulary(64, rng=np.random.RandomState(8))
    A = v1.parse('A')
    B = v1.parse('B')
    C = v1.parse('C')
    t = v1.transform_to(v2)

    assert v2.parse('A').compare(np.dot(t, A.v)) > 0.95
    assert v2.parse('C+B').compare(np.dot(t, C.v + B.v)) > 0.95

    t = v1.transform_to(v2, keys=['A', 'B'])

    assert v2.parse('A').compare(np.dot(t, A.v)) > 0.95
    assert v2.parse('B').compare(np.dot(t, C.v + B.v)) > 0.95
开发者ID:Ocode,项目名称:nengo,代码行数:17,代码来源:test_vocabulary.py

示例4: test_subset

# 需要导入模块: from nengo.spa import Vocabulary [as 别名]
# 或者: from nengo.spa.Vocabulary import transform_to [as 别名]
def test_subset(rng):
    v1 = Vocabulary(32, rng=rng)
    v1.parse('A+B+C+D+E+F+G')

    # Test creating a vocabulary subset
    v2 = v1.create_subset(['A', 'C', 'E'])
    assert v2.keys == ['A', 'C', 'E']
    assert v2['A'] == v1['A']
    assert v2['C'] == v1['C']
    assert v2['E'] == v1['E']
    assert v2.parent is v1

    # Test creating a subset from a subset (it should create off the parent)
    v3 = v2.create_subset(['C', 'E'])
    assert v3.parent is v2.parent and v2.parent is v1

    v3.include_pairs = True
    assert v3.key_pairs == ['C*E']
    assert not v1.include_pairs
    assert not v2.include_pairs

    # Test transform_to between subsets (should be identity transform)
    t = v1.transform_to(v2)

    assert v2.parse('A').compare(np.dot(t, v1.parse('A').v)) >= 0.99999999
开发者ID:4n6strider,项目名称:nengo,代码行数:27,代码来源:test_vocabulary.py


注:本文中的nengo.spa.Vocabulary.transform_to方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。