当前位置: 首页>>代码示例>>Python>>正文


Python Engine.candidate_count方法代码示例

本文整理汇总了Python中nearpy.Engine.candidate_count方法的典型用法代码示例。如果您正苦于以下问题:Python Engine.candidate_count方法的具体用法?Python Engine.candidate_count怎么用?Python Engine.candidate_count使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nearpy.Engine的用法示例。


在下文中一共展示了Engine.candidate_count方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: example2

# 需要导入模块: from nearpy import Engine [as 别名]
# 或者: from nearpy.Engine import candidate_count [as 别名]
def example2():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 20000

    ##########################################################

    print 'Performing indexing with HashPermutations...'
    t0 = time.time()

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 14)
    rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine
    engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS,DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_perm.store_vector(v)

    # Then update permuted index
    permutations.build_permuted_index()

    t1 = time.time()
    print 'Indexing took %f seconds' % (t1-t0)

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 3
    print '\nNeighbour distances with HashPermutations:'
    print '  -> Candidate count is %d' % engine_perm.candidate_count(query)
    results = engine_perm.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1,DIM))
    dists = CosineDistance().distance_matrix(matrix,query)
    dists = dists.reshape((-1,))
    dists = sorted(dists)
    print dists[:10]

    ##########################################################

    print '\nPerforming indexing with HashPermutationMapper...'
    t0 = time.time()

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 14)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine
    engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS,DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_perm2.store_vector(v)

    t1 = time.time()
    print 'Indexing took %f seconds' % (t1-t0)

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 4
    print '\nNeighbour distances with HashPermutationMapper:'
    print '  -> Candidate count is %d' % engine_perm2.candidate_count(query)
    results = engine_perm2.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Real neighbours
    print '\nReal neighbour distances:'
    query = query.reshape((1,DIM))
    dists = CosineDistance().distance_matrix(matrix,query)
    dists = dists.reshape((-1,))
    dists = sorted(dists)
#.........这里部分代码省略.........
开发者ID:BeifeiZhou,项目名称:NearPy,代码行数:103,代码来源:example2.py

示例2: example1

# 需要导入模块: from nearpy import Engine [as 别名]
# 或者: from nearpy.Engine import candidate_count [as 别名]
def example1():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 10000

    print 'Creating engines'

    # We want 12 projections, 20 results at least
    rbpt = RandomBinaryProjectionTree('rbpt', 20, 20)

    # Create engine 1
    engine_rbpt = Engine(DIM, lshashes=[rbpt], distance=CosineDistance())

    # Create binary hash as child hash
    rbp = RandomBinaryProjections('rbp1', 20)

    # Create engine 2
    engine = Engine(DIM, lshashes=[rbp], distance=CosineDistance())

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 20)
    rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine 3
    engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance())

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 12)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine 3
    engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance())

    print 'Indexing %d random vectors of dimension %d' % (POINTS, DIM)

    # First index some random vectors
    matrix = numpy.zeros((POINTS,DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine.store_vector(v)
        engine_rbpt.store_vector(v)
        engine_perm.store_vector(v)
        engine_perm2.store_vector(v)

    print 'Buckets 1 = %d' % len(engine.storage.buckets['rbp1'].keys())
    print 'Buckets 2 = %d' % len(engine_rbpt.storage.buckets['rbpt'].keys())

    print 'Building permuted index for HashPermutations'

    # Then update permuted index
    permutations.build_permuted_index()

    print 'Generate random data'

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 1
    print '\nNeighbour distances with RandomBinaryProjectionTree:'
    print '  -> Candidate count is %d' % engine_rbpt.candidate_count(query)
    results = engine_rbpt.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 2
    print '\nNeighbour distances with RandomBinaryProjections:'
    print '  -> Candidate count is %d' % engine.candidate_count(query)
    results = engine.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 3
    print '\nNeighbour distances with HashPermutations:'
    print '  -> Candidate count is %d' % engine_perm.candidate_count(query)
    results = engine_perm.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 4
    print '\nNeighbour distances with HashPermutations2:'
    print '  -> Candidate count is %d' % engine_perm2.candidate_count(query)
    results = engine_perm2.neighbours(query)
    dists = [x[2] for x in results]
    print dists

#.........这里部分代码省略.........
开发者ID:BeifeiZhou,项目名称:NearPy,代码行数:103,代码来源:example1.py

示例3: __init__

# 需要导入模块: from nearpy import Engine [as 别名]
# 或者: from nearpy.Engine import candidate_count [as 别名]
class LSHSearch:
    def __init__(self, feature_file, dimension, neighbour, lsh_project_num):
        self.feature_file = feature_file
        self.dimension = dimension
        self.neighbour = neighbour
        self.face_feature = defaultdict(str)
        self.ground_truth = defaultdict(int)

        # Create permutations meta-hash
        permutations2 = HashPermutationMapper('permut2')

        tmp_feature = defaultdict(str)
        with open(feature_file, 'rb') as f:
            reader = csv.reader(f, delimiter=' ')
            for name, feature in reader:
                tmp_feature[name] = feature

        matrix = []
        label = []
        for item in tmp_feature.keys():
            v = map(float, tmp_feature[item].split(','))
            matrix.append(np.array(v))
            label.append(item)
        random.shuffle(matrix)
        print 'PCA matric : ', len(matrix)

        rbp_perm2 = PCABinaryProjections('testPCABPHash', lsh_project_num, matrix)
        permutations2.add_child_hash(rbp_perm2)

        # Create engine
        nearest = NearestFilter(self.neighbour)
        self.engine = Engine(self.dimension, lshashes=[permutations2], distance=CosineDistance(), vector_filters=[nearest])

    def build(self):
        with open(self.feature_file, 'rb') as f:
            reader = csv.reader(f, delimiter=' ')
            for name, feature in reader:
                self.face_feature[name] = feature
                person = '_'.join(name.split('_')[:-1])
                self.ground_truth[person] += 1 

        for item in self.face_feature.keys():
            v = map(float, self.face_feature[item].split(','))
            self.engine.store_vector(v, item)
 
    def query(self, person_list):
        dists = []
        scores = []
        for person in person_list:
            query = map(float, self.face_feature[person].split(','))
            print '\nNeighbour distances with mutliple binary hashes:'
            print '  -> Candidate count is %d' % self.engine.candidate_count(query)
            results = self.engine.neighbours(query)
            dists = dists + [x[1] for x in results]
            scores = scores + [x[2] for x in results]
        t_num = [self.ground_truth['_'.join(x.split('_')[:-1])] for x in dists]
        res = zip(dists, scores, t_num)
        res.sort(key = lambda t: t[1])
        res1 = self.f7(res, person_list)
        return res1[:self.neighbour]

    def true_num(self, person):
        return self.ground_truth[person]

    def f7(self, zip_seq, person_list):
        seen = set()
        seen_add = seen.add
        return [ x for x in zip_seq if not (x[0] in seen or seen_add(x[0]) or x[0] in person_list)]
开发者ID:foremap,项目名称:face-search-demo,代码行数:70,代码来源:lsh_index.py

示例4: TestRandomBinaryProjectionTree

# 需要导入模块: from nearpy import Engine [as 别名]
# 或者: from nearpy.Engine import candidate_count [as 别名]
class TestRandomBinaryProjectionTree(unittest.TestCase):

    def setUp(self):
        self.memory = MemoryStorage()
        self.redis_object = Redis(host='localhost',
                                  port=6379, db=0)
        self.redis_storage = RedisStorage(self.redis_object)

    def test_retrieval(self):
        # We want 12 projections, 20 results at least
        rbpt = RandomBinaryProjectionTree('testHash', 12, 20)

        # Create engine for 100 dimensional feature space, do not forget to set
        # nearest filter to 20, because default is 10
        self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])

        # First insert 200000 random vectors
        print 'Indexing...'
        for k in range(200000):
            x = numpy.random.randn(100)
            x_data = 'data'
            self.engine.store_vector(x, x_data)

        # Now do random queries and check result set size
        print 'Querying...'
        for k in range(10):
            x = numpy.random.randn(100)
            n = self.engine.neighbours(x)
            print "Candidate count = %d" % self.engine.candidate_count(x)
            print "Result size = %d" % len(n)
            self.assertEqual(len(n), 20)

    def test_storage_memory(self):
        # We want 10 projections, 20 results at least
        rbpt = RandomBinaryProjectionTree('testHash', 10, 20)

        # Create engine for 100 dimensional feature space
        self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])

        # First insert 2000 random vectors
        for k in range(2000):
            x = numpy.random.randn(100)
            x_data = 'data'
            self.engine.store_vector(x, x_data)

        self.memory.store_hash_configuration(rbpt)

        rbpt2 = RandomBinaryProjectionTree(None, None, None)
        rbpt2.apply_config(self.memory.load_hash_configuration('testHash'))

        self.assertEqual(rbpt.dim, rbpt2.dim)
        self.assertEqual(rbpt.hash_name, rbpt2.hash_name)
        self.assertEqual(rbpt.projection_count, rbpt2.projection_count)

        for i in range(rbpt.normals.shape[0]):
            for j in range(rbpt.normals.shape[1]):
                self.assertEqual(rbpt.normals[i, j], rbpt2.normals[i, j])

        # Now do random queries and check result set size
        for k in range(10):
            x = numpy.random.randn(100)
            keys1 = rbpt.hash_vector(x, querying=True)
            keys2 = rbpt2.hash_vector(x, querying=True)
            self.assertEqual(len(keys1), len(keys2))
            for k in range(len(keys1)):
                self.assertEqual(keys1[k], keys2[k])

    def test_storage_redis(self):
        # We want 10 projections, 20 results at least
        rbpt = RandomBinaryProjectionTree('testHash', 10, 20)

        # Create engine for 100 dimensional feature space
        self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])

        # First insert 2000 random vectors
        for k in range(2000):
            x = numpy.random.randn(100)
            x_data = 'data'
            self.engine.store_vector(x, x_data)


        self.redis_storage.store_hash_configuration(rbpt)

        rbpt2 = RandomBinaryProjectionTree(None, None, None)
        rbpt2.apply_config(self.redis_storage.load_hash_configuration('testHash'))

        self.assertEqual(rbpt.dim, rbpt2.dim)
        self.assertEqual(rbpt.hash_name, rbpt2.hash_name)
        self.assertEqual(rbpt.projection_count, rbpt2.projection_count)

        for i in range(rbpt.normals.shape[0]):
            for j in range(rbpt.normals.shape[1]):
                self.assertEqual(rbpt.normals[i, j], rbpt2.normals[i, j])

        # Now do random queries and check result set size
        for k in range(10):
            x = numpy.random.randn(100)
            keys1 = rbpt.hash_vector(x, querying=True)
            keys2 = rbpt2.hash_vector(x, querying=True)
            self.assertEqual(len(keys1), len(keys2))
#.........这里部分代码省略.........
开发者ID:MarcCote,项目名称:NearPy,代码行数:103,代码来源:projection_trees_tests.py


注:本文中的nearpy.Engine.candidate_count方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。