本文整理汇总了Python中nansat.Nansat.get_geolocation_grids方法的典型用法代码示例。如果您正苦于以下问题:Python Nansat.get_geolocation_grids方法的具体用法?Python Nansat.get_geolocation_grids怎么用?Python Nansat.get_geolocation_grids使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nansat.Nansat
的用法示例。
在下文中一共展示了Nansat.get_geolocation_grids方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_export_gcps_complex_to_netcdf
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_export_gcps_complex_to_netcdf(self):
''' Should export file with GCPs and write correct complex bands'''
n0 = Nansat(self.test_file_gcps, logLevel=40)
b0 = n0['L_469']
n1 = Nansat(domain=n0)
n1.add_band(b0.astype('complex64'),
parameters={'name': 'L_469'})
tmpfilename = os.path.join(ntd.tmp_data_path, 'nansat_export_gcps_complex.nc')
n1.export(tmpfilename)
ncf = netcdf_file(tmpfilename)
self.assertTrue(os.path.exists(tmpfilename))
self.assertTrue('GCPX' in ncf.variables)
self.assertTrue('GCPY' in ncf.variables)
self.assertTrue('GCPPixel' in ncf.variables)
self.assertTrue('GCPLine' in ncf.variables)
n2 = Nansat(tmpfilename)
b2 = n2['L_469']
np.testing.assert_allclose(b0, b2)
lon0, lat0 = n0.get_geolocation_grids()
lon2, lat2 = n1.get_geolocation_grids()
np.testing.assert_allclose(lon0, lon2)
np.testing.assert_allclose(lat0, lat2)
示例2: test_geolocation_of_exportedNC_vs_original
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_geolocation_of_exportedNC_vs_original(self):
""" Lon/lat in original and exported file should coincide """
orig = Nansat(self.test_file_gcps, mapper=self.default_mapper)
orig.export(self.tmp_filename)
copy = Nansat(self.tmp_filename, mapper=self.default_mapper)
lon0, lat0 = orig.get_geolocation_grids()
lon1, lat1 = copy.get_geolocation_grids()
np.testing.assert_allclose(lon0, lon1)
np.testing.assert_allclose(lat0, lat1)
示例3: geolocation_of_exportedNC_vs_original
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def geolocation_of_exportedNC_vs_original(self, file):
orig = Nansat(file)
testFile = "test.nc"
orig.export(testFile)
copy = Nansat(testFile)
lon0, lat0 = orig.get_geolocation_grids()
lon1, lat1 = copy.get_geolocation_grids()
np.testing.assert_allclose(lon0, lon1)
np.testing.assert_allclose(lat0, lat1)
os.unlink(ncfile)
示例4: test_geolocation_of_exportedNC_vs_original
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_geolocation_of_exportedNC_vs_original(self):
''' Lon/lat in original and exported file should coincide '''
orig = Nansat(self.test_file_gcps)
tmpfilename = os.path.join(ntd.tmp_data_path, 'nansat_export_gcps.nc')
orig.export(tmpfilename)
copy = Nansat(tmpfilename)
lon0, lat0 = orig.get_geolocation_grids()
lon1, lat1 = copy.get_geolocation_grids()
np.testing.assert_allclose(lon0, lon1)
np.testing.assert_allclose(lat0, lat1)
示例5: test_geolocation_of_exportedNC_vs_original
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_geolocation_of_exportedNC_vs_original(self):
''' Lon/lat in original and exported file should coincide '''
orig = Nansat(self.test_file_gcps)
orig.export(self.tmpfilename)
copy = Nansat(self.tmpfilename)
lon0, lat0 = orig.get_geolocation_grids()
lon1, lat1 = copy.get_geolocation_grids()
np.testing.assert_allclose(lon0, lon1)
np.testing.assert_allclose(lat0, lat1)
os.unlink(self.tmpfilename)
示例6: test_get_auto_ticks_vector
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_get_auto_ticks_vector(self):
n = Nansat(self.test_file_gcps)
lon, lat = n.get_geolocation_grids()
f = Figure(lon)
lonTicks = f._get_auto_ticks([28, 29, 30, 100], lon)
self.assertEqual(len(lonTicks), 3)
示例7: test_get_auto_ticks_number
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_get_auto_ticks_number(self):
n = Nansat(self.test_file_gcps)
lon, lat = n.get_geolocation_grids()
f = Figure(lon)
lonTicks = f._get_auto_ticks(5, lon)
latTicks = f._get_auto_ticks(5, lat)
self.assertEqual(len(lonTicks), 5)
n.logger.error(str(lonTicks))
n.logger.error(str(latTicks))
示例8: test_get_tick_index_from_grid
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_get_tick_index_from_grid(self):
''' Should return indeces of pixel closest to ticks '''
n = Nansat(self.test_file_gcps)
lon, lat = n.get_geolocation_grids()
f = Figure(lon)
lonTicksIdx = f._get_tick_index_from_grid([28.5, 29], lon, 1, lon.shape[1])
latTicksIdx = f._get_tick_index_from_grid([71, 71.5], lat, lat.shape[0], 1)
n.logger.error(str(lonTicksIdx))
n.logger.error(str(latTicksIdx))
示例9: test_add_latlon_grids_auto
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_add_latlon_grids_auto(self):
''' Should create figure with lon/lat gridlines spaced automatically '''
tmpfilename = os.path.join(ntd.tmp_data_path, 'figure_latlon_grids_auto.png')
n = Nansat(self.test_file_gcps)
b = n[1]
lon, lat = n.get_geolocation_grids()
f = Figure(b)
f.process(clim='hist', lonGrid=lon, latGrid=lat)
f.save(tmpfilename)
self.assertEqual(type(f), Figure)
self.assertTrue(os.path.exists(tmpfilename))
示例10: test_export_gcps_to_netcdf
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_export_gcps_to_netcdf(self):
''' Should export file with GCPs and write correct bands'''
n0 = Nansat(self.test_file_gcps, logLevel=40)
tmpfilename = os.path.join(ntd.tmp_data_path, 'nansat_export_gcps.nc')
n0.export(tmpfilename)
ncf = netcdf_file(tmpfilename)
self.assertTrue(os.path.exists(tmpfilename))
self.assertTrue('GCPX' in ncf.variables)
self.assertTrue('GCPY' in ncf.variables)
self.assertTrue('GCPPixel' in ncf.variables)
self.assertTrue('GCPLine' in ncf.variables)
n1 = Nansat(tmpfilename)
b0 = n0['L_469']
b1 = n1['L_469']
np.testing.assert_allclose(b0, b1)
lon0, lat0 = n0.get_geolocation_grids()
lon1, lat1 = n1.get_geolocation_grids()
np.testing.assert_allclose(lon0, lon1)
np.testing.assert_allclose(lat0, lat1)
示例11: test_add_latlon_grids_list
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_add_latlon_grids_list(self):
''' Should create figure with lon/lat gridlines given manually '''
tmpfilename = os.path.join(self.tmp_data_path, 'figure_latlon_grids_list.png')
n = Nansat(self.test_file_gcps, mapper=self.default_mapper)
b = n[1]
lon, lat = n.get_geolocation_grids()
f = Figure(b)
f.process(clim='hist', lonGrid=lon,
latGrid=lat,
lonTicks=[28, 29, 30],
latTicks=[70.5, 71, 71.5, 73])
f.save(tmpfilename)
self.assertEqual(type(f), Figure)
self.assertTrue(os.path.exists(tmpfilename))
示例12: test_add_latlon_grids_number
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
def test_add_latlon_grids_number(self):
''' Should create figure with lon/lat gridlines given manually '''
tmpfilename = os.path.join(self.tmp_data_path, 'figure_latlon_grids_number.png')
n = Nansat(self.test_file_gcps, mapper=self.default_mapper)
n.resize(3)
b = n[1]
lon, lat = n.get_geolocation_grids()
f = Figure(b)
f.process(cmax=100, lonGrid=lon,
latGrid=lat,
lonTicks=7,
latTicks=7)
f.save(tmpfilename)
self.assertEqual(type(f), Figure)
self.assertTrue(os.path.exists(tmpfilename))
示例13: object
# 需要导入模块: from nansat import Nansat [as 别名]
# 或者: from nansat.Nansat import get_geolocation_grids [as 别名]
fig.save(oFileName + '03_title.png')
# Create a Figure object (fig)
fig = Figure(array)
# add logo to image to the lower left corner
# (make sure file is in the current folder)
fig.process(cmin=10, cmax=60, logoFileName='nansat_logo_s.png',
logoLocation=[10, -35], logoSize=[20, 20],
legend=True, LEGEND_HEIGHT=0.3)
# Save the figure
fig.save(oFileName + '04_logo.png')
# Create a Figure object (fig)
fig = Figure(array)
# Get lat/lon arrays from Nansat object (may take some time)
lonGrid, latGrid = n.get_geolocation_grids()
# Make figure with lat/lon grids
fig.process(cmin=10, cmax=60, latGrid=latGrid, lonGrid=lonGrid,
latlonGridSpacing=10, latlonLabels=10)
# save the fig
fig.save(oFileName + '05_latlon.png', )
# Create a Figure object (fig)
fig = Figure(array)
# Get Nansat object with watermask
wm = n.watermask()
# Get array from Nansat object. 0 - land, 1 - water
wmArray = wm[1]
# Compute min and max valuse from ratio
clim = fig.clim_from_histogram(ratio=1.0)
# Make figure with land overlay (gray) and apply brightness gamma correction