当前位置: 首页>>代码示例>>Python>>正文


Python measures.mean函数代码示例

本文整理汇总了Python中mystic.math.measures.mean函数的典型用法代码示例。如果您正苦于以下问题:Python mean函数的具体用法?Python mean怎么用?Python mean使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了mean函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_solve_constraint

def test_solve_constraint():

  constraints = """
  spread([x0,x1]) - 1.0 = mean([x0,x1])   
  mean([x0,x1,x2]) = x2"""

  from mystic.math.measures import mean, spread
  _constraints = solve(constraints)
  solv = generate_solvers(_constraints)
  constraint = generate_constraint(solv)
  x = constraint([1.0, 2.0, 3.0])
  assert all(x) == all([1.0, 5.0, 3.0])
  assert mean(x) == x[2]
  assert spread(x[:-1]) - 1.0 == mean(x[:-1])
开发者ID:cdeil,项目名称:mystic,代码行数:14,代码来源:test_symbolic.py

示例2: test_solve_constraint

def test_solve_constraint():

  # sympy can no longer do "spread([x0,x1])"... so use "x1 - x0"
  constraints = """
  (x1 - x0) - 1.0 = mean([x0,x1])   
  mean([x0,x1,x2]) = x2"""

  from mystic.math.measures import mean
  _constraints = solve(constraints)
  solv = generate_solvers(_constraints)
  constraint = generate_constraint(solv)
  x = constraint([1.0, 2.0, 3.0])
  assert all(x) == all([1.0, 5.0, 3.0])
  assert mean(x) == x[2]
  assert (x[1] - x[0]) - 1.0 == mean(x[:-1])
开发者ID:uqfoundation,项目名称:mystic,代码行数:15,代码来源:test_symbolic.py

示例3: test_penalize

def test_penalize():

  from mystic.math.measures import mean, spread
  def mean_constraint(x, target):
    return mean(x) - target

  def range_constraint(x, target):
    return spread(x) - target

  @quadratic_equality(condition=range_constraint, kwds={'target':5.0})
  @quadratic_equality(condition=mean_constraint, kwds={'target':5.0})
  def penalty(x):
    return 0.0

  def cost(x):
    return abs(sum(x) - 5.0)

  from mystic.solvers import fmin
  from numpy import array
  x = array([1,2,3,4,5])
  y = fmin(cost, x, penalty=penalty, disp=False)

  assert round(mean(y)) == 5.0
  assert round(spread(y)) == 5.0
  assert round(cost(y)) == 4*(5.0)
开发者ID:uqfoundation,项目名称:mystic,代码行数:25,代码来源:test_constraints.py

示例4: test_constrain

def test_constrain():

  from mystic.math.measures import mean, spread
  from mystic.math.measures import impose_mean, impose_spread
  def mean_constraint(x, mean=0.0):
    return impose_mean(mean, x)

  def range_constraint(x, spread=1.0):
    return impose_spread(spread, x)

  @inner(inner=range_constraint, kwds={'spread':5.0})
  @inner(inner=mean_constraint, kwds={'mean':5.0})
  def constraints(x):
    return x

  def cost(x):
    return abs(sum(x) - 5.0)

  from mystic.solvers import fmin_powell
  from numpy import array
  x = array([1,2,3,4,5])
  y = fmin_powell(cost, x, constraints=constraints, disp=False)

  assert mean(y) == 5.0
  assert spread(y) == 5.0
  assert almostEqual(cost(y), 4*(5.0))
开发者ID:uqfoundation,项目名称:mystic,代码行数:26,代码来源:test_coupler.py

示例5: constraints

 def constraints(x):
     # constrain the last x_i to be the same value as the first x_i
     x[-1] = x[0]
     # constrain x such that mean(x) == target
     if not almostEqual(mean(x), target):
         x = impose_mean(target, x)
     return x
开发者ID:jcfr,项目名称:mystic,代码行数:7,代码来源:constraint2_example01.py

示例6: test_solve_constraint

def test_solve_constraint():

  from mystic.math.measures import mean
  @with_mean(1.0)
  def constraint(x):
    x[-1] = x[0]
    return x

  x = solve(constraint, guess=[2,3,1])

  assert almostEqual(mean(x), 1.0, tol=1e-15)
  assert x[-1] == x[0]
  assert issolution(constraint, x)
开发者ID:jcfr,项目名称:mystic,代码行数:13,代码来源:test_constraints.py

示例7: test_generate_constraint

def test_generate_constraint():

  constraints = """
  spread([x0, x1, x2]) = 10.0
  mean([x0, x1, x2]) = 5.0"""

  from mystic.math.measures import mean, spread
  solv = generate_solvers(constraints)
  assert almostEqual(mean(solv[0]([1,2,3])), 5.0)
  assert almostEqual(spread(solv[1]([1,2,3])), 10.0)

  constraint = generate_constraint(solv)
  assert almostEqual(constraint([1,2,3]), [0.0,5.0,10.0], 1e-10)
开发者ID:uqfoundation,项目名称:mystic,代码行数:13,代码来源:test_symbolic.py

示例8: test_with_constraint

def test_with_constraint():

  from mystic.math.measures import mean, impose_mean

  @with_constraint(inner, kwds={'target':5.0})
  def mean_of_squared(x, target):
    return impose_mean(target, [i**2 for i in x])

  from numpy import array
  x = array([1,2,3,4,5])
  y = impose_mean(5, [i**2 for i in x])
  assert mean(y) == 5.0
  assert mean_of_squared(x) == y
开发者ID:uqfoundation,项目名称:mystic,代码行数:13,代码来源:test_constraints.py

示例9: test_simplify

def test_simplify():
  constraints = """
  mean([x0, x1, x2]) <= 5.0
  x0 <= x1 + x2"""

  from mystic.math.measures import mean
  _constraints = simplify(constraints)
  solv = generate_solvers(_constraints)
  constraint = generate_constraint(solv)
  x = constraint([1.0, -2.0, -3.0])
  assert all(x) == all([-5.0, -2.0, -3.0])
  assert mean(x) <= 5.0
  assert x[0] <= x[1] + x[2]
开发者ID:uqfoundation,项目名称:mystic,代码行数:13,代码来源:test_symbolic.py

示例10: test_with_mean

def test_with_mean():

  from mystic.math.measures import mean, impose_mean

  @with_mean(5.0)
  def mean_of_squared(x):
    return [i**2 for i in x]

  from numpy import array
  x = array([1,2,3,4,5])
  y = impose_mean(5, [i**2 for i in x])
  assert mean(y) == 5.0
  assert mean_of_squared(x) == y
开发者ID:uqfoundation,项目名称:mystic,代码行数:13,代码来源:test_constraints.py

示例11: test_with_mean_spread

def test_with_mean_spread():

  from mystic.math.measures import mean, spread, impose_mean, impose_spread

  @with_spread(50.0)
  @with_mean(5.0)
  def constrained_squared(x):
    return [i**2 for i in x]

  from numpy import array
  x = array([1,2,3,4,5])
  y = impose_spread(50.0, impose_mean(5.0,[i**2 for i in x]))
  assert almostEqual(mean(y), 5.0, tol=1e-15)
  assert almostEqual(spread(y), 50.0, tol=1e-15)
  assert constrained_squared(x) == y
开发者ID:uqfoundation,项目名称:mystic,代码行数:15,代码来源:test_constraints.py

示例12: test_as_constraint

def test_as_constraint():

  from mystic.math.measures import mean, spread
  def mean_constraint(x, target):
    return mean(x) - target

  def range_constraint(x, target):
    return spread(x) - target

  @quadratic_equality(condition=range_constraint, kwds={'target':5.0})
  @quadratic_equality(condition=mean_constraint, kwds={'target':5.0})
  def penalty(x):
    return 0.0

  ndim = 3
  constraints = as_constraint(penalty, solver='fmin')
  #XXX: this is expensive to evaluate, as there are nested optimizations

  from numpy import arange
  x = arange(ndim)
  _x = constraints(x)
  
  assert round(mean(_x)) == 5.0
  assert round(spread(_x)) == 5.0
  assert round(penalty(_x)) == 0.0

  def cost(x):
    return abs(sum(x) - 5.0)

  npop = ndim*3
  from mystic.solvers import diffev
  y = diffev(cost, x, npop, constraints=constraints, disp=False, gtol=10)

  assert round(mean(y)) == 5.0
  assert round(spread(y)) == 5.0
  assert round(cost(y)) == 5.0*(ndim-1)
开发者ID:uqfoundation,项目名称:mystic,代码行数:36,代码来源:test_constraints.py

示例13: test_outer_constraint

def test_outer_constraint():

  from mystic.math.measures import impose_mean, mean

  def impose_constraints(x, mean, weights=None):
    return impose_mean(mean, x, weights)

  @outer(outer=impose_constraints, kwds={'mean':5.0})
  def mean_of_squared(x):
    return [i**2 for i in x]

  from numpy import array
  x = array([1,2,3,4,5])
  y = impose_mean(5, [i**2 for i in x])
  assert mean(y) == 5.0
  assert mean_of_squared(x) == y
开发者ID:uqfoundation,项目名称:mystic,代码行数:16,代码来源:test_coupler.py

示例14: test_with_penalty

def test_with_penalty():

  from mystic.math.measures import mean, spread
  @with_penalty(quadratic_equality, kwds={'target':5.0})
  def penalty(x, target):
    return mean(x) - target

  def cost(x):
    return abs(sum(x) - 5.0)

  from mystic.solvers import fmin
  from numpy import array
  x = array([1,2,3,4,5])
  y = fmin(cost, x, penalty=penalty, disp=False)

  assert round(mean(y)) == 5.0
  assert round(cost(y)) == 4*(5.0)
开发者ID:uqfoundation,项目名称:mystic,代码行数:17,代码来源:test_constraints.py

示例15: constrain

 def constrain(rv):
   "constrain:  y >= m  and  sum(wi)_{k} = 1 for each k in K"
   pm = scenario()
   pm.load(rv, pts)      # here rv is param: w,x,y
   #impose: sum(wi)_{k} = 1 for each k in K
   norm = 1.0
   for i in range(len(pm)):
     w = pm[i].weights
     w[-1] = norm - sum(w[:-1])
     pm[i].weights = w
   #impose: y >= m 
   values, weights = pm.values, pm.weights
   y = float(mean(values, weights))
   if not (y >= float(target[0])):
     pm.values = impose_mean(target[0]+target[1], values, weights)
   rv = pm.flatten(all=True) 
   return rv
开发者ID:agamdua,项目名称:mystic,代码行数:17,代码来源:discrete.py


注:本文中的mystic.math.measures.mean函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。