当前位置: 首页>>代码示例>>Python>>正文


Python ndarray.array函数代码示例

本文整理汇总了Python中mxnet.ndarray.array函数的典型用法代码示例。如果您正苦于以下问题:Python array函数的具体用法?Python array怎么用?Python array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了array函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_word_embedding_similarity_evaluation_models

def test_word_embedding_similarity_evaluation_models(similarity_function):
    try:
        from scipy import stats
    except ImportError:
        raise ImportError('This testcase requires scipy.')

    dataset = nlp.data.WordSim353()

    counter = nlp.data.utils.Counter(w for wpair in dataset for w in wpair[:2])
    vocab = nlp.vocab.Vocab(counter)
    vocab.set_embedding(
        nlp.embedding.create('fasttext', source='wiki.simple',
                             embedding_root='tests/data/embedding'))

    data = [[vocab[d[0]], vocab[d[1]], d[2]] for d in dataset]
    words1, words2, scores = zip(*data)

    evaluator = nlp.embedding.evaluation.WordEmbeddingSimilarity(
        vocab.embedding.idx_to_vec,
        similarity_function=similarity_function)
    evaluator.initialize()

    words1, words2 = nd.array(words1), nd.array(words2)
    pred_similarity = evaluator(words1, words2)

    sr = stats.spearmanr(pred_similarity.asnumpy(), np.array(scores))
    assert np.isclose(0.6076485693769645, sr.correlation)
开发者ID:hridaydutta123,项目名称:gluon-nlp,代码行数:27,代码来源:test_vocab_embed.py

示例2: main

def main(ctx):
    calcEngine = CALC()
    
    tmp = np.asarray( [k for k in range(6)] )
    matA = nd.array( np.reshape( tmp ,(2,3) ) ).as_in_context( ctx )

    tmp = np.asarray( [k*10 for k in range(6)] )
    matB = nd.array( np.reshape( tmp, (2,3) ) ).as_in_context( ctx )

    
    num = 1000
    
    if 1:
        t0 = time.time()
        for k in range(num):
            matD = calcEngine.calc_sum(matA, matB)
        t1 = time.time() 
        print 'dll: time cost {}ms'.format( float(t1 - t0)*1000/num)
        print matD

    if 1:
        t0 = time.time()
        for k in range(num):
            matC = calc_sum(matA, matB)
        t1 = time.time() 
        print 'py: time cost {}ms'.format( float(t1 - t0)*1000/num)
        print matC
开发者ID:z01nl1o02,项目名称:tests,代码行数:27,代码来源:test.py

示例3: _preprocess

 def _preprocess(self, data):
     input_shape = self.signature['inputs'][0]['data_shape']
     height, width = input_shape[2:]
     img_arr = image.read(data[0])
     img_arr = image.resize(img_arr, width, height)
     img_arr = image.color_normalize(img_arr, nd.array([127.5]), nd.array([127.5]))
     img_arr = image.transform_shape(img_arr)
     return [img_arr]
开发者ID:codealphago,项目名称:mxnet-model-server,代码行数:8,代码来源:pixel2pixel_service.py

示例4: train

def train(input_variable, target_variable, encoder, decoder, teacher_forcing_ratio,
          encoder_optimizer, decoder_optimizer, criterion, max_length, ctx):
    with autograd.record():
        loss = F.zeros((1,), ctx=ctx)

        encoder_hidden = encoder.initHidden(ctx)

        input_length = input_variable.shape[0]
        target_length = target_variable.shape[0]

        encoder_outputs, encoder_hidden = encoder(
                input_variable.expand_dims(0), encoder_hidden)

        if input_length < max_length:
            encoder_outputs = F.concat(encoder_outputs.flatten(),
                F.zeros((max_length - input_length, encoder.hidden_size), ctx=ctx), dim=0)
        else:
            encoder_outputs = encoder_outputs.flatten()



        decoder_input = F.array([SOS_token], ctx=ctx)

        decoder_hidden = encoder_hidden

        use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False

        if use_teacher_forcing:
            # Teacher forcing: Feed the target as the next input
            for di in range(target_length):
                decoder_output, decoder_hidden, decoder_attention = decoder(
                    decoder_input, decoder_hidden, encoder_outputs)

                loss = F.add(loss, criterion(decoder_output, target_variable[di]))
                print criterion(decoder_output, target_variable[di])
                decoder_input = target_variable[di]  # Teacher forcing

        else:
            # Without teacher forcing: use its own predictions as the next input
            for di in range(target_length):
                decoder_output, decoder_hidden, decoder_attention = decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
                topi = decoder_output.argmax(axis=1)

                decoder_input = F.array([topi.asscalar()], ctx=ctx)

                loss = F.add(loss, criterion(decoder_output, target_variable[di]))

                if topi.asscalar() == EOS_token:
                    break

        loss.backward()

    encoder_optimizer.step(1)
    decoder_optimizer.step(1)

    return loss.asscalar()/target_length
开发者ID:ZiyueHuang,项目名称:MXSeq2Seq,代码行数:57,代码来源:seq2seq.py

示例5: next

 def next(self):
     if self._fetcher.iter_next():
         tic = time.time()
         data_batch = self._fetcher.get()
         print 'Waited for {} seconds'.format(time.time() - tic)
     else:
         raise StopIteration
     
     return DataBatch(data=[array(data_batch[0])], label=[array(data_batch[1])])
开发者ID:zgsxwsdxg,项目名称:ademxapp,代码行数:9,代码来源:data.py

示例6: _score_sentence

 def _score_sentence(self, feats, tags):
     # Gives the score of a provided tag sequence
     score = nd.array([0])
     tags = nd.concat(nd.array([self.tag2idx[START_TAG]]), *tags, dim=0)
     for i, feat in enumerate(feats):
         score = score + \
             self.transitions[to_scalar(tags[i+1]), to_scalar(tags[i])] + feat[to_scalar(tags[i+1])]
     score = score + self.transitions[self.tag2idx[STOP_TAG],
                                      to_scalar(tags[int(tags.shape[0]-1)])]
     return score
开发者ID:CoderHHX,项目名称:incubator-mxnet,代码行数:10,代码来源:lstm_crf.py

示例7: data_iter

def data_iter():
    # generate random indices
    idx = list(range(num_examples))
    random.shuffle(idx) # randomly sort
    for i in range(0, num_examples, batch_size): #1000 examples and fetch 10 each time
        j = nd.array(idx[i: min(i+batch_size, num_examples)])
        yield nd.take(X, j), nd.take(y,j) # ?
开发者ID:gonglixue,项目名称:PRML_Python,代码行数:7,代码来源:LinearRegression.py

示例8: data_generator

def data_generator(batch_size):
    index = list(range(config.training_size))
    random.shuffle(index)

    for i in range(0, config.training_size, batch_size):
        j = nd.array(index[i:min(i + batch_size, config.training_size)])
        yield nd.take(X, j), nd.take(y, j)
开发者ID:dolphinsUnderMoon,项目名称:HoloXon,代码行数:7,代码来源:linear_regression.py

示例9: _forward_alg

    def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        alphas = [[-10000.] * self.tagset_size]
        alphas[0][self.tag2idx[START_TAG]] = 0.
        alphas = nd.array(alphas)

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward variables at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].reshape((1, -1))
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].reshape((1, -1))
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = alphas + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var))
            alphas = nd.concat(*alphas_t, dim=0).reshape((1, -1))
        terminal_var = alphas + self.transitions[self.tag2idx[STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha
开发者ID:CoderHHX,项目名称:incubator-mxnet,代码行数:26,代码来源:lstm_crf.py

示例10: data_iter

def data_iter():
    # 产生一个随机索引
    idx = list(range(num_examples))
    random.shuffle(idx)##打乱
    for i in range(0, num_examples, batch_size):##0 10 20 ...
        j = nd.array(idx[i:min(i+batch_size,num_examples)])##随机抽取10个样例
        yield nd.take(X, j), nd.take(y, j)##样例和标签 我们通过python的yield来构造一个迭代器。
开发者ID:dyz-zju,项目名称:MVision,代码行数:7,代码来源:0_linear_regression_dis2_with_bis.py

示例11: test_out_grads

def test_out_grads():
    x = nd.ones((3, 5))
    dx = nd.zeros_like(x)
    mark_variables([x], [dx])
    da = None
    db = nd.array([1,2,3,4,5])
    dc = nd.array([5,4,3,2,1])

    with train_section():
        a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True)
        backward([a, b, c], [da, db, dc])

    assert (dx.asnumpy() == np.array(
        [[1,1,1,1,1],
         [1,2,3,4,5],
         [5,4,3,2,1]])).all()
开发者ID:CoderHHX,项目名称:incubator-mxnet,代码行数:16,代码来源:test_contrib_autograd.py

示例12: calculate_avg_q

def calculate_avg_q(samples, qnet):
    total_q = 0.0
    for i in range(len(samples)):
        state = nd.array(samples[i:i + 1], ctx=qnet.ctx) / float(255.0)
        total_q += qnet.forward(is_train=False, data=state)[0].asnumpy().max(axis=1).sum()
    avg_q_score = total_q / float(len(samples))
    return avg_q_score
开发者ID:CoderHHX,项目名称:incubator-mxnet,代码行数:7,代码来源:dqn_run_test.py

示例13: forward

 def forward(self, x):
     if self.scale_factor == 0:
         warnings.warn("Scale factor cannot be 0.")
         return x
     if isinstance(x, np.ndarray):
         return nd.array(x/self.scale_factor)
     return x / self.scale_factor
开发者ID:luobao-intel,项目名称:incubator-mxnet,代码行数:7,代码来源:transforms.py

示例14: SGD

def SGD(sym, data_inputs, X, Y, X_test, Y_test, total_iter_num,
        lr=None,
        lr_scheduler=None, prior_precision=1,
        out_grad_f=None,
        initializer=None,
        minibatch_size=100, dev=mx.gpu()):
    if out_grad_f is None:
        label_key = list(set(data_inputs.keys()) - set(['data']))[0]
    exe, params, params_grad, _ = get_executor(sym, dev, data_inputs, initializer)
    optimizer = mx.optimizer.create('sgd', learning_rate=lr,
                                    rescale_grad=X.shape[0] / minibatch_size,
                                    lr_scheduler=lr_scheduler,
                                    wd=prior_precision)
    updater = mx.optimizer.get_updater(optimizer)
    start = time.time()
    for i in range(total_iter_num):
        indices = numpy.random.randint(X.shape[0], size=minibatch_size)
        X_batch = X[indices]
        Y_batch = Y[indices]
        exe.arg_dict['data'][:] = X_batch
        if out_grad_f is None:
            exe.arg_dict[label_key][:] = Y_batch
            exe.forward(is_train=True)
            exe.backward()
        else:
            exe.forward(is_train=True)
            exe.backward(out_grad_f(exe.outputs, nd.array(Y_batch, ctx=dev)))
        for k in params:
            updater(k, params_grad[k], params[k])
        if (i + 1) % 500 == 0:
            end = time.time()
            print("Current Iter Num: %d" % (i + 1), "Time Spent: %f" % (end - start))
            sample_test_acc(exe, X=X_test, Y=Y_test, label_num=10, minibatch_size=100)
            start = time.time()
    return exe, params, params_grad
开发者ID:CoderHHX,项目名称:incubator-mxnet,代码行数:35,代码来源:algos.py

示例15: get_image

 def get_image(self,X):
     B,C,H,W = self.shape
     X = np.reshape(X,(28,28))
     X = X[:,:,np.newaxis]
     X = np.tile(X,(1,1,3))
     if H > X.shape[0] or W > X.shape[1]:
         raise RuntimeError
     if H < X.shape[0] or W < X.shape[1]:
         if self.fortrain:
             X, _ = mx.image.random_crop(nd.array(X),(H,W))
         else:
             X,_ = mx.image.center_crop(nd.array(X),(H,W))
         X = np.transpose(X.asnumpy(),(2,0,1))
     else:
         #print "data augment is off"
         X = np.transpose(X,(2,0,1))
     return X
开发者ID:z01nl1o02,项目名称:tests,代码行数:17,代码来源:demo.py


注:本文中的mxnet.ndarray.array函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。