当前位置: 首页>>代码示例>>Python>>正文


Python nd.array函数代码示例

本文整理汇总了Python中mxnet.nd.array函数的典型用法代码示例。如果您正苦于以下问题:Python array函数的具体用法?Python array怎么用?Python array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了array函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: preprocess_imdb

def preprocess_imdb(train_tokenized, test_tokenized, train_data, test_data,
                    vocab):
    """Preprocess the IMDB data set for sentiment analysis."""
    def encode_samples(tokenized_samples, vocab):
        features = []
        for sample in tokenized_samples:
            feature = []
            for token in sample:
                if token in vocab.token_to_idx:
                    feature.append(vocab.token_to_idx[token])
                else:
                    feature.append(0)
            features.append(feature)
        return features

    def pad_samples(features, maxlen=500, PAD=0):
        padded_features = []
        for feature in features:
            if len(feature) > maxlen:
                padded_feature = feature[:maxlen]
            else:
                padded_feature = feature
                while len(padded_feature) < maxlen:
                    padded_feature.append(PAD)
            padded_features.append(padded_feature)
        return padded_features

    train_features = encode_samples(train_tokenized, vocab)
    test_features = encode_samples(test_tokenized, vocab)
    train_features = nd.array(pad_samples(train_features, 500, 0))
    test_features = nd.array(pad_samples(test_features, 500, 0))
    train_labels = nd.array([score for _, score in train_data])
    test_labels = nd.array([score for _, score in test_data])
    return train_features, test_features, train_labels, test_labels
开发者ID:xiaodongdreams,项目名称:gluon-tutorials-zh,代码行数:34,代码来源:utils.py

示例2: __init__

 def __init__(self, is_train, crop_size, voc_dir, colormap2label):
     self.rgb_mean = nd.array([0.485, 0.456, 0.406])
     self.rgb_std = nd.array([0.229, 0.224, 0.225])
     self.crop_size = crop_size
     data, labels = read_voc_images(root=voc_dir, is_train=is_train)
     self.data = [self.normalize_image(im) for im in self.filter(data)]
     self.labels = self.filter(labels)
     self.colormap2label = colormap2label
     print('read ' + str(len(self.data)) + ' examples')
开发者ID:tsintian,项目名称:d2l-en,代码行数:9,代码来源:voc.py

示例3: plotscore

def plotscore(w, d):
    xgrid = np.arange(-3, 3, 0.02)
    ygrid = np.arange(-3, 3, 0.02)
    xx, yy = np.meshgrid(xgrid, ygrid)
    zz = nd.zeros(shape=(xgrid.size, ygrid.size, 2))
    zz[:, :, 0] = nd.array(xx)
    zz[:, :, 1] = nd.array(yy)
    vv = nd.dot(zz, w) + b
    CS = plt.contour(xgrid, ygrid, vv.asnumpy())
    plt.clabel(CS, inline=1, fontsize=10)
开发者ID:sharmasx,项目名称:mlheaven,代码行数:10,代码来源:mxnet_samples.py

示例4: predict

def predict(net, data, label):
    data = nd.array(data)
    label = nd.array(label)
    hidden = net.begin_state(func=mx.nd.zeros,batch_size = data.shape[0],ctx=mx.cpu())
    dd = nd.array(data.reshape((data.shape[0],5,11)).swapaxes(0,1))
    output,hidden = net(dd,hidden)
    output = output.reshape((5,data.shape[0],1))
    output = nd.sum(output,axis=0)/5
    l = nd.argmax(output, axis=1)
    res = nd.mean(l==label)
    return res.asscalar()
开发者ID:EGOISTK21,项目名称:iFantasy,代码行数:11,代码来源:models.py

示例5: preprocess_imdb

def preprocess_imdb(data, vocab):
    """Preprocess the IMDB data set for sentiment analysis."""
    max_l = 500

    def pad(x):
        return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))

    tokenized_data = get_tokenized_imdb(data)
    features = nd.array([pad(vocab.to_indices(x)) for x in tokenized_data])
    labels = nd.array([score for _, score in data])
    return features, labels
开发者ID:tsintian,项目名称:d2l-zh,代码行数:11,代码来源:utils.py

示例6: reset

    def reset(self):
        """Resets the iterator to the beginning of the data."""
        self.curr_idx = 0
        random.shuffle(self.idx)
        for i in range(len(self.data)):
            data, labels =  self.data[i], self.labels[i]
            p = np.random.permutation(len(data))
            self.data[i], self.labels[i] = data[p], labels[p]

        self.nddata = []
        self.ndlabel = []
        for buck,label_buck in zip(self.data, self.labels):
            self.nddata.append(nd.array(buck, dtype=self.dtype))
            self.ndlabel.append(nd.array(label_buck, dtype=self.dtype))
开发者ID:FNDaily,项目名称:amazon-sagemaker-examples,代码行数:14,代码来源:sentiment.py

示例7: __iter__

    def __iter__(self):
        data = self.dataset[:]
        X = data[0]
        y = nd.array(data[1])
        n = X.shape[0]
        if self.shuffle:
            idx = np.arange(n)
            np.random.shuffle(idx)
            X = nd.array(X.asnumpy()[idx])
            y = nd.array(y.asnumpy()[idx])

        for i in range(n // self.batch_size):
            yield (X[i * self.batch_size:(i + 1) * self.batch_size],
                   y[i * self.batch_size:(i + 1) * self.batch_size])
开发者ID:liushuchun,项目名称:machinelearning,代码行数:14,代码来源:utils.py

示例8: build_array

 def build_array(lines, vocab, max_len, is_source):
     lines = [vocab[line] for line in lines]
     if not is_source:
         lines = [[vocab.bos] + line + [vocab.eos] for line in lines]
     array = nd.array([pad(line, max_len, vocab.pad) for line in lines])
     valid_len = (array != vocab.pad).sum(axis=1)
     return array, valid_len
开发者ID:tsintian,项目名称:d2l-en,代码行数:7,代码来源:nmt.py

示例9: data_iter_random

def data_iter_random(corpus_indices, batch_size, num_steps, ctx=None):
    """Sample mini-batches in a random order from sequential data."""
    num_examples = (len(corpus_indices) - 1) // num_steps
    epoch_size = num_examples // batch_size
    example_indices = list(range(num_examples))
    random.shuffle(example_indices)
    def _data(pos):
        return corpus_indices[pos : pos+num_steps]
    for i in range(epoch_size):
        i = i * batch_size
        batch_indices = example_indices[i : i+batch_size]
        X = nd.array(
            [_data(j * num_steps) for j in batch_indices], ctx=ctx)
        Y = nd.array(
            [_data(j * num_steps + 1) for j in batch_indices], ctx=ctx)
        yield X, Y
开发者ID:wisemaker,项目名称:gluon-tutorials-zh,代码行数:16,代码来源:utils.py

示例10: data_iter

def data_iter(batch_size, num_examples, features, labels): 
    """遍历数据集。"""
    indices = list(range(num_examples))
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        j = nd.array(indices[i: min(i + batch_size, num_examples)])
        yield features.take(j), labels.take(j)
开发者ID:noticeable,项目名称:gluon-tutorials-zh,代码行数:7,代码来源:utils.py

示例11: run

    def run(self, inputs, **kwargs):
        """Run model inference and return the result

        Parameters
        ----------
        inputs : numpy array
            input to run a layer on

        Returns
        -------
        params : numpy array
            result obtained after running the inference on mxnet
        """
        # create module, passing cpu context
        if self.device == 'CPU':
            ctx = mx.cpu()
        else:
            raise NotImplementedError("ONNX tests are run only for CPU context.")

        # run inference
        net_inputs = [nd.array(input_data, ctx=ctx) for input_data in inputs]
        net_outputs = self.net(*net_inputs)
        results = []
        results.extend([o for o in net_outputs.asnumpy()])
        result = np.array(results)

        return [result]
开发者ID:UniKrau,项目名称:incubator-mxnet,代码行数:27,代码来源:gluon_backend_rep.py

示例12: data_iter

def data_iter(batch_size, num_examples, X, y):
    """walk around dataset"""
    idx = list(range(num_examples))
    random.shuffle(idx)
    for i in range(0, num_examples, batch_size):
        j = nd.array(idx[i: min(i + batch_size, num_examples)])
        yield X.take(j), y.take(j)
开发者ID:z01nl1o02,项目名称:tests,代码行数:7,代码来源:utils.py

示例13: forward

    def forward(self, words1, words2, words3):  # pylint: disable=arguments-differ
        """Implement forward computation.

        Parameters
        ----------
        words1 : NDArray
            Word indices.
        words2 : NDArray
            Word indices.
        words3 : NDArray
            Word indices.

        Returns
        -------
        predicted_indices : NDArray
            Predicted indices of shape (batch_size, k)
        """
        pred_idxs = self.analogy(words1, words2, words3)

        if self.exclude_question_words:
            orig_context = pred_idxs.context
            pred_idxs = pred_idxs.asnumpy().tolist()
            pred_idxs = [[
                idx for idx in row if idx != w1 and idx != w2 and idx != w3
            ] for row, w1, w2, w3 in zip(pred_idxs, words1, words2, words3)]
            pred_idxs = [p[:self.k] for p in pred_idxs]
            pred_idxs = nd.array(pred_idxs, ctx=orig_context)

        return pred_idxs
开发者ID:arfu2016,项目名称:gluon-nlp,代码行数:29,代码来源:evaluation.py

示例14: __setitem__

    def __setitem__(self, tokens, new_embedding):
        """Updates embedding vectors for tokens.

        If self.allow_extend is True, vectors for previously unknown tokens can be introduced.

        Parameters
        ----------
        tokens : hashable object or a list or tuple of hashable objects
            A token or a list of tokens whose embedding vector are to be updated.
        new_embedding : mxnet.ndarray.NDArray
            An NDArray to be assigned to the embedding vectors of `tokens`. Its length must be equal
            to the number of `tokens` and its width must be equal to the dimension of embedding of
            the glossary. If `tokens` is a singleton, it must be 1-D or 2-D. If `tokens` is a list
            of multiple strings, it must be 2-D.
        """
        if self.allow_extend and self._idx_to_vec is None:
            # Initialize self._idx_to_vec
            assert C.UNK_IDX == 0
            self._idx_to_vec = self._init_unknown_vec(shape=(1, new_embedding.shape[-1]))

        tokens = self._check_vector_update(tokens, new_embedding)

        if self.allow_extend:
            # Add new / previously unknown tokens
            for token in filter(lambda t: t not in self._token_to_idx, tokens):
                idx = len(self._token_to_idx)
                self._token_to_idx[token] = idx
                self._idx_to_token.append(token)

            num_extended = len(self._token_to_idx) - self.idx_to_vec.shape[0]
            if num_extended == 1:
                warnings.warn(
                    'When adding new tokens via TokenEmbedding.__setitem__ '
                    'the internal embedding matrix needs to be reallocated. '
                    'Users are therefore encouraged to batch their updates '
                    '(i.e. add multiple new tokens at a time).')

            # Extend shape of idx_to_vec
            idx_to_vec = nd.zeros(shape=(len(self._token_to_idx),
                                         self.idx_to_vec.shape[1]))
            idx_to_vec[:self.idx_to_vec.shape[0]] = self._idx_to_vec
            self._idx_to_vec = idx_to_vec

        indices = []
        for token in tokens:
            if token in self._token_to_idx:
                indices.append(self._token_to_idx[token])
            else:
                if self.unknown_token:
                    raise KeyError(('Token "{}" is unknown. To update the embedding vector for an'
                                    ' unknown token, please explicitly include "{}" as the '
                                    '`unknown_token` in `tokens`. This is to avoid unintended '
                                    'updates.').format(token, self._idx_to_token[C.UNK_IDX]))
                else:
                    raise KeyError(('Token "{}" is unknown. Updating the embedding vector for an '
                                    'unknown token is not allowed because `unknown_token` is not '
                                    'specified.').format(token))

        self._idx_to_vec[nd.array(indices)] = new_embedding
开发者ID:hridaydutta123,项目名称:gluon-nlp,代码行数:59,代码来源:token_embedding.py

示例15: evals

def evals(net, adata ,alabel, batch_size):
    hidden = net.begin_state(func=mx.nd.zeros,batch_size = batch_size,ctx=mx.cpu())
    dataLoader = DataLoader(adata, alabel)
    tl = 0
    for data, label in dataLoader.dataIter(batch_size):
        label = nd.array(label)
        #label = nd.ones(shape=(5,batch_size)) * label
        #label = label.reshape((-1,))
        dd = nd.array(data.reshape((batch_size,5,11)).swapaxes(0,1))
        #hidden = detach(hidden)
        output,hidden = net(dd, hidden)
        output = output.reshape((5,batch_size,1))
        output = nd.sum(output,axis=0)/5
        lv = loss(output, label)

        tl += nd.sum(lv).asscalar()
    return tl / len(adata)
开发者ID:EGOISTK21,项目名称:iFantasy,代码行数:17,代码来源:models.py


注:本文中的mxnet.nd.array函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。