当前位置: 首页>>代码示例>>Python>>正文


Python tools.assert_array_equal函数代码示例

本文整理汇总了Python中mvpa2.testing.tools.assert_array_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_array_equal函数的具体用法?Python assert_array_equal怎么用?Python assert_array_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了assert_array_equal函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_sifter_with_balancing

def test_sifter_with_balancing():
    # extended previous test which was already
    # "... somewhat duplicating the doctest"
    ds = Dataset(samples=np.arange(12).reshape((-1, 2)),
                 sa={'chunks':   [ 0 ,  1 ,  2 ,  3 ,  4,   5 ],
                     'targets':  ['c', 'c', 'c', 'p', 'p', 'p']})

    # Without sifter -- just to assure that we do get all of them
    # i.e. 6*5*4*3/(4!) = 15
    par = ChainNode([NFoldPartitioner(cvtype=4, attr='chunks')])
    assert_equal(len(list(par.generate(ds))), 15)

    # so we will take 4 chunks out of available 7, but would care only
    # about those partitions where we have balanced number of 'c' and 'p'
    # entries
    assert_raises(ValueError,
                  lambda x: list(Sifter([('targets', dict(wrong=1))]).generate(x)),
                  ds)

    par = ChainNode([NFoldPartitioner(cvtype=4, attr='chunks'),
                     Sifter([('partitions', 2),
                             ('targets',
                              dict(uvalues=['c', 'p'],
                                   balanced=True))])
                     ])
    dss = list(par.generate(ds))
    # print [ x[x.sa.partitions==2].sa.targets for x in dss ]
    assert_equal(len(dss), 9)
    for ds_ in dss:
        testing = ds[ds_.sa.partitions == 2]
        assert_array_equal(np.unique(testing.sa.targets), ['c', 'p'])
        # and we still have both targets  present in training
        training = ds[ds_.sa.partitions == 1]
        assert_array_equal(np.unique(training.sa.targets), ['c', 'p'])
开发者ID:Soletmons,项目名称:PyMVPA,代码行数:34,代码来源:test_generators.py

示例2: test_sphere_scaled

def test_sphere_scaled():
    s1 = ne.Sphere(3)
    s = ne.Sphere(3, element_sizes=(1, 1))

    # Should give exactly the same results since element_sizes are 1s
    for p in ((0, 0), (-23, 1)):
        assert_array_equal(s1(p), s(p))
        ok_(len(s(p)) == len(set(s(p))))

    # Raise exception if query dimensionality does not match element_sizes
    assert_raises(ValueError, s, (1,))

    s = ne.Sphere(3, element_sizes=(1.5, 2))
    assert_array_equal(s((0, 0)),
                       [(-2, 0), (-1, -1), (-1, 0), (-1, 1),
                        (0, -1), (0, 0), (0, 1),
                        (1, -1), (1, 0), (1, 1), (2, 0)])

    s = ne.Sphere(1.5, element_sizes=(1.5, 1.5, 1.5))
    res = s((0, 0, 0))
    ok_(np.all([np.sqrt(np.sum(np.array(x)**2)) <= 1.5 for x in res]))
    ok_(len(res) == 7)

    # all neighbors so no more than 1 voxel away -- just a cube, for
    # some "sphere" effect radius had to be 3.0 ;)
    td = np.sqrt(3*1.5**2)
    s = ne.Sphere(td, element_sizes=(1.5, 1.5, 1.5))
    res = s((0, 0, 0))
    ok_(np.all([np.sqrt(np.sum(np.array(x)**2)) <= td for x in res]))
    ok_(np.all([np.sum(np.abs(x) > 1) == 0 for x in res]))
    ok_(len(res) == 27)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:31,代码来源:test_neighborhood.py

示例3: test_identity

def test_identity():
    # IdentityNeighborhood() behaves like Sphere(0.5) without all of the
    # computation. Test on a few different coordinates.
    neighborhood = ne.IdentityNeighborhood()
    sphere = ne.Sphere(0.5)
    for center in ((0, 0, 0), (1, 1, 1), (0, 0), (0, )):
        assert_array_equal(neighborhood(center), sphere(center))
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:7,代码来源:test_neighborhood.py

示例4: test_mapper_vs_zscore

def test_mapper_vs_zscore():
    """Test by comparing to results of elderly z-score function
    """
    # data: 40 sample feature line in 20d space (40x20; samples x features)
    dss = [
        dataset_wizard(np.concatenate(
            [np.arange(40) for i in range(20)]).reshape(20,-1).T,
                targets=1, chunks=1),
        ] + datasets.values()

    for ds in dss:
        ds1 = deepcopy(ds)
        ds2 = deepcopy(ds)

        zsm = ZScoreMapper(chunks_attr=None)
        assert_raises(RuntimeError, zsm.forward, ds1.samples)
        idhashes = (idhash(ds1), idhash(ds1.samples))
        zsm.train(ds1)
        idhashes_train = (idhash(ds1), idhash(ds1.samples))
        assert_equal(idhashes, idhashes_train)

        # forward dataset
        ds1z_ds = zsm.forward(ds1)
        idhashes_forwardds = (idhash(ds1), idhash(ds1.samples))
        # must not modify samples in place!
        assert_equal(idhashes, idhashes_forwardds)

        # forward samples explicitly
        ds1z = zsm.forward(ds1.samples)
        idhashes_forward = (idhash(ds1), idhash(ds1.samples))
        assert_equal(idhashes, idhashes_forward)

        zscore(ds2, chunks_attr=None)
        assert_array_almost_equal(ds1z, ds2.samples)
        assert_array_equal(ds1.samples, ds.samples)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:35,代码来源:test_zscoremapper.py

示例5: test_corrstability_smoketest

def test_corrstability_smoketest(ds):
    if not 'chunks' in ds.sa:
        return
    if len(ds.sa['targets'].unique) > 30:
        # was regression dataset
        return
    # very basic testing since
    cs = CorrStability()
    #ds = datasets['uni2small']
    out = cs(ds)
    assert_equal(out.shape, (ds.nfeatures,))
    ok_(np.all(out >= -1.001))  # it should be a correlation after all
    ok_(np.all(out <= 1.001))

    # and theoretically those nonbogus features should have higher values
    if 'nonbogus_targets' in ds.fa:
        bogus_features = np.array([x==None for x in  ds.fa.nonbogus_targets])
        assert_array_less(np.mean(out[bogus_features]), np.mean(out[~bogus_features]))
    # and if we move targets to alternative location
    ds = ds.copy(deep=True)
    ds.sa['alt'] = ds.T
    ds.sa.pop('targets')
    assert_raises(KeyError, cs, ds)
    cs = CorrStability('alt')
    out_ = cs(ds)
    assert_array_equal(out, out_)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:26,代码来源:test_corrstability.py

示例6: test_basic

 def test_basic(self):
     dataset = data_generators.linear1d_gaussian_noise()
     k = GeneralizedLinearKernel()
     clf = GPR(k)
     clf.train(dataset)
     y = clf.predict(dataset.samples)
     assert_array_equal(y.shape, dataset.targets.shape)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:7,代码来源:test_gpr.py

示例7: test_cv_no_generator_custom_splitter

    def test_cv_no_generator_custom_splitter(self):
        ds = Dataset(np.arange(4), sa={'category': ['to', 'to', 'from', 'from'],
                                       'targets': ['a', 'b', 'c', 'd']})

        class Measure(Classifier):

            def _train(self, ds_):
                assert_array_equal(ds_.samples, ds.samples[2:])
                assert_array_equal(ds_.sa.category, ['from'] * len(ds_))

            def _predict(self, ds_):
                assert(ds_ is not ds)  # we pass a shallow copy
                # could be called to predit training or testing data
                if np.all(ds_.sa.targets != ['c', 'd']):
                    assert_array_equal(ds_.samples, ds.samples[:2])
                    assert_array_equal(ds_.sa.category, ['to'] * len(ds_))
                else:
                    assert_array_equal(ds_.sa.category, ['from'] * len(ds_))

                return ['c', 'd']

        measure = Measure()
        cv = CrossValidation(measure, splitter=Splitter('category', ['from', 'to']))
        res = cv(ds)
        assert_array_equal(res, [[1]])  # failed perfectly ;-)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:25,代码来源:test_clfcrossval.py

示例8: test_chained_crossvalidation_searchlight

def test_chained_crossvalidation_searchlight():
    from mvpa2.clfs.gnb import GNB
    from mvpa2.clfs.meta import MappedClassifier
    from mvpa2.generators.partition import NFoldPartitioner
    from mvpa2.mappers.base import ChainMapper
    from mvpa2.mappers.base import Mapper
    from mvpa2.measures.base import CrossValidation
    from mvpa2.measures.searchlight import sphere_searchlight
    from mvpa2.testing.datasets import datasets

    dataset = datasets['3dlarge'].copy()
    dataset.fa['voxel_indices'] = dataset.fa.myspace
    sample_clf = GNB()              # fast and deterministic

    class ZScoreFeaturesMapper(Mapper):
        """Very basic mapper which would take care about standardizing
        all features within each sample separately
        """
        def _forward_data(self, data):
            return (data - np.mean(data, axis=1)[:, None])/np.std(data, axis=1)[:, None]

    # only do partial to save time
    sl_kwargs = dict(radius=2, center_ids=[3, 50])
    clf_mapped = MappedClassifier(sample_clf, ZScoreFeaturesMapper())
    cv = CrossValidation(clf_mapped, NFoldPartitioner())
    sl = sphere_searchlight(cv, **sl_kwargs)
    results_mapped = sl(dataset)

    cv_chained = ChainMapper([ZScoreFeaturesMapper(auto_train=True),
                              CrossValidation(sample_clf, NFoldPartitioner())])
    sl_chained = sphere_searchlight(cv_chained, **sl_kwargs)
    results_chained = sl_chained(dataset)

    assert_array_equal(results_mapped, results_chained)
开发者ID:beausievers,项目名称:PyMVPA,代码行数:34,代码来源:test_usecases.py

示例9: test_remove_invariant_as_a_mapper

def test_remove_invariant_as_a_mapper():
    from mvpa2.featsel.helpers import RangeElementSelector
    from mvpa2.featsel.base import StaticFeatureSelection, SensitivityBasedFeatureSelection
    from mvpa2.testing.datasets import datasets
    from mvpa2.datasets.miscfx import remove_invariant_features

    mapper = SensitivityBasedFeatureSelection(
              lambda x: np.std(x, axis=0),
              RangeElementSelector(lower=0, inclusive=False),
              train_analyzer=False,
              auto_train=True)

    ds = datasets['uni2large'].copy()

    ds.a['mapper'] = StaticFeatureSelection(np.arange(ds.nfeatures))
    ds.fa['index'] = np.arange(ds.nfeatures)
    ds.samples[:, [1, 8]] = 10

    ds_out = mapper(ds)

    # Validate that we are getting the same results as remove_invariant_features
    ds_rifs = remove_invariant_features(ds)
    assert_array_equal(ds_out.samples, ds_rifs.samples)
    assert_array_equal(ds_out.fa.index, ds_rifs.fa.index)

    assert_equal(ds_out.fa.index[1], 2)
    assert_equal(ds_out.fa.index[8], 10)
开发者ID:beausievers,项目名称:PyMVPA,代码行数:27,代码来源:test_usecases.py

示例10: test_aggregation

    def test_aggregation(self):
        data = dataset_wizard(np.arange( 20 ).reshape((4, 5)), targets=1, chunks=1)

        ag_data = aggregate_features(data, np.mean)

        ok_(ag_data.nsamples == 4)
        ok_(ag_data.nfeatures == 1)
        assert_array_equal(ag_data.samples[:, 0], [2, 7, 12, 17])
开发者ID:armaneshaghi,项目名称:PyMVPA,代码行数:8,代码来源:test_datasetfx.py

示例11: _assert_ds_mat_attributes_equal

def _assert_ds_mat_attributes_equal(ds, m, attr_keys=('a', 'sa', 'fa')):
    # ds is a Dataset object, m a matlab-like dictionary
    for attr_k in attr_keys:
        attr_v = getattr(ds, attr_k)

        for k in attr_v.keys():
            v = attr_v[k].value
            assert_array_equal(m[attr_k][k][0, 0].ravel(), v)
开发者ID:StevenLOL,项目名称:PyMVPA,代码行数:8,代码来源:test_cosmo.py

示例12: test_basic

 def test_basic(self):
     skip_if_no_external('scipy') # needed by GPR code
     dataset = data_generators.linear1d_gaussian_noise()
     k = GeneralizedLinearKernel()
     clf = GPR(k)
     clf.train(dataset)
     y = clf.predict(dataset.samples)
     assert_array_equal(y.shape, dataset.targets.shape)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:8,代码来源:test_gpr.py

示例13: test_partitionmapper

def test_partitionmapper():
    ds = give_data()
    oep = OddEvenPartitioner()
    parts = list(oep.generate(ds))
    assert_equal(len(parts), 2)
    for i, p in enumerate(parts):
        assert_array_equal(p.sa['partitions'].unique, [1, 2])
        assert_equal(p.a.partitions_set, i)
        assert_equal(len(p), len(ds))
开发者ID:Soletmons,项目名称:PyMVPA,代码行数:9,代码来源:test_generators.py

示例14: test_sphere

def test_sphere():
    # test sphere initialization
    s = ne.Sphere(1)
    center0 = (0, 0, 0)
    center1 = (1, 1, 1)
    assert_equal(len(s(center0)), 7)
    target = array([array([-1,  0,  0]),
              array([ 0, -1,  0]),
              array([ 0,  0, -1]),
              array([0, 0, 0]),
              array([0, 0, 1]),
              array([0, 1, 0]),
              array([1, 0, 0])])
    # test of internals -- no recomputation of increments should be done
    prev_increments = s._increments
    assert_array_equal(s(center0), target)
    ok_(prev_increments is s._increments)
    # query lower dimensionality
    _ = s((0, 0))
    ok_(not prev_increments is s._increments)

    # test Sphere call
    target = [array([0, 1, 1]),
              array([1, 0, 1]),
              array([1, 1, 0]),
              array([1, 1, 1]),
              array([1, 1, 2]),
              array([1, 2, 1]),
              array([2, 1, 1])]
    res = s(center1)
    assert_array_equal(array(res), target)
    # They all should be tuples
    ok_(np.all([isinstance(x, tuple) for x in res]))

    # test for larger diameter
    s = ne.Sphere(4)
    assert_equal(len(s(center1)), 257)

    # test extent keyword
    #s = ne.Sphere(4,extent=(1,1,1))
    #assert_array_equal(array(s((0,0,0))), array([[0,0,0]]))

    # test Errors during initialisation and call
    #assert_raises(ValueError, ne.Sphere, 2)
    #assert_raises(ValueError, ne.Sphere, 1.0)

    # no longer extent available
    assert_raises(TypeError, ne.Sphere, 1, extent=(1))
    assert_raises(TypeError, ne.Sphere, 1, extent=(1.0, 1.0, 1.0))

    s = ne.Sphere(1)
    #assert_raises(ValueError, s, (1))
    if __debug__:
        # No float coordinates allowed for now...
        # XXX might like to change that ;)
        # 
        assert_raises(ValueError, s, (1.0, 1.0, 1.0))
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:57,代码来源:test_neighborhood.py

示例15: _assert_ds_less_or_equal

def _assert_ds_less_or_equal(x, y):
    # x and y are a Dataset; x should contain a subset of
    # elements in .sa, fa, a and have the same samples as y
    # Note: no support for fancy objects such as mappers
    assert_array_equal(x.samples, y.samples)
    for label in ('a', 'fa', 'sa'):
        vx = getattr(x, label)
        vy = getattr(y, label)
        _assert_array_collectable_less_or_equal(vx, vy)
开发者ID:StevenLOL,项目名称:PyMVPA,代码行数:9,代码来源:test_cosmo.py


注:本文中的mvpa2.testing.tools.assert_array_equal函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。