当前位置: 首页>>代码示例>>Python>>正文


Python AttributeMap.to_numeric方法代码示例

本文整理汇总了Python中mvpa2.misc.attrmap.AttributeMap.to_numeric方法的典型用法代码示例。如果您正苦于以下问题:Python AttributeMap.to_numeric方法的具体用法?Python AttributeMap.to_numeric怎么用?Python AttributeMap.to_numeric使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mvpa2.misc.attrmap.AttributeMap的用法示例。


在下文中一共展示了AttributeMap.to_numeric方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_attrmap_conflicts

# 需要导入模块: from mvpa2.misc.attrmap import AttributeMap [as 别名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 别名]
def test_attrmap_conflicts():
    am_n = AttributeMap({'a':1, 'b':2, 'c':1})
    am_t = AttributeMap({'a':1, 'b':2, 'c':1}, collisions_resolution='tuple')
    am_l = AttributeMap({'a':1, 'b':2, 'c':1}, collisions_resolution='lucky')
    q_f = ['a', 'b', 'a', 'c']
    # should have no effect on forward mapping
    ok_(np.all(am_n.to_numeric(q_f) == am_t.to_numeric(q_f)))
    ok_(np.all(am_t.to_numeric(q_f) == am_l.to_numeric(q_f)))

    assert_raises(ValueError, am_n.to_literal, [2])
    r_t = am_t.to_literal([2, 1])
    r_l = am_l.to_literal([2, 1])
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:14,代码来源:test_attrmap.py

示例2: _test_gpr_model_selection

# 需要导入模块: from mvpa2.misc.attrmap import AttributeMap [as 别名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 别名]
    def _test_gpr_model_selection(self):  # pragma: no cover
        """Smoke test for running model selection while getting GPRWeights

        TODO: DISABLED because setting of hyperparameters was not adopted for 0.6 (yet)
        """
        if not externals.exists('openopt'):
            return
        amap = AttributeMap()           # we would need to pass numbers into the GPR
        dataset = datasets['uni2small'].copy() #data_generators.linear1d_gaussian_noise()
        dataset.targets = amap.to_numeric(dataset.targets).astype(float)
        k = GeneralizedLinearKernel()
        clf = GPR(k, enable_ca=['log_marginal_likelihood'])
        sa = clf.get_sensitivity_analyzer() # should be regular weights
        sa_ms = clf.get_sensitivity_analyzer(flavor='model_select') # with model selection
        def prints():
            print clf.ca.log_marginal_likelihood, clf.kernel.Sigma_p, clf.kernel.sigma_0

        sa(dataset)
        lml = clf.ca.log_marginal_likelihood

        sa_ms(dataset)
        lml_ms = clf.ca.log_marginal_likelihood

        self.assertTrue(lml_ms > lml)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:26,代码来源:test_gpr.py

示例3: SVM

# 需要导入模块: from mvpa2.misc.attrmap import AttributeMap [as 别名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 别名]

#.........这里部分代码省略.........
        # LABELS
        ul = None
        self.__traindataset = dataset


        # OK -- we have to map labels since
        #  binary ones expect -1/+1
        #  Multiclass expect labels starting with 0, otherwise they puke
        #   when ran from ipython... yikes
        if __debug__:
            debug("SG_", "Creating labels instance")

        if self.__is_regression__:
            labels_ = np.asarray(targets_sa.value, dtype='double')
        else:
            ul = targets_sa.unique
            # ul.sort()

            if len(ul) == 2:
                # assure that we have -1/+1
                _labels_dict = {ul[0]:-1.0, ul[1]:+1.0}
            elif len(ul) < 2:
                raise FailedToTrainError, \
                      "We do not have 1-class SVM brought into SG yet"
            else:
                # can't use plain enumerate since we need them swapped
                _labels_dict = dict([ (ul[i], i) for i in range(len(ul))])

            # Create SG-customized attrmap to assure -1 / +1 if necessary
            self._attrmap = AttributeMap(_labels_dict, mapnumeric=True)

            if __debug__:
                debug("SG__", "Mapping labels using dict %s" % _labels_dict)
            labels_ = self._attrmap.to_numeric(targets_sa.value).astype(float)

        labels = shogun.Features.Labels(labels_)
        _setdebug(labels, 'Labels')


        # KERNEL

        # XXX cruel fix for now... whole retraining business needs to
        # be rethought
        if retrainable:
            _changedData['kernel_params'] = _changedData.get('kernel_params', False)

        # TODO: big RF to move non-kernel classifiers away
        if 'kernel-based' in self.__tags__ and (not retrainable
               or _changedData['traindata'] or _changedData['kernel_params']):
            # If needed compute or just collect arguments for SVM and for
            # the kernel

            if retrainable and __debug__:
                if _changedData['traindata']:
                    debug("SG",
                          "Re-Creating kernel since training data has changed")

                if _changedData['kernel_params']:
                    debug("SG",
                          "Re-Creating kernel since params %s has changed" %
                          _changedData['kernel_params'])


            k = self.params.kernel
            k.compute(dataset)
            self.__kernel = kernel = k.as_raw_sg()
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:70,代码来源:svm.py

示例4: plot_decision_boundary_2d

# 需要导入模块: from mvpa2.misc.attrmap import AttributeMap [as 别名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 别名]
def plot_decision_boundary_2d(dataset, clf=None,
                              targets=None, regions=None, maps=None,
                              maps_res=50, vals=None,
                              data_callback=None):
    """Plot a scatter of a classifier's decision boundary and data points

    Assumes data is 2d (no way to visualize otherwise!!)

    Parameters
    ----------
    dataset : `Dataset`
      Data points to visualize (might be the data `clf` was train on, or
      any novel data).
    clf : `Classifier`, optional
      Trained classifier
    targets : string, optional
      What samples attributes to use for targets.  If None and clf is
      provided, then `clf.params.targets_attr` is used.
    regions : string, optional
      Plot regions (polygons) around groups of samples with the same
      attribute (and target attribute) values. E.g. chunks.
    maps : string in {'targets', 'estimates'}, optional
      Either plot underlying colored maps, such as clf predictions
      within the spanned regions, or estimates from the classifier
      (might not work for some).
    maps_res : int, optional
      Number of points in each direction to evaluate.
      Points are between axis limits, which are set automatically by
      matplotlib.  Higher number will yield smoother decision lines but come
      at the cost of O^2 classifying time/memory.
    vals : array of floats, optional
      Where to draw the contour lines if maps='estimates'
    data_callback : callable, optional
      Callable object to preprocess the new data points.
      Classified points of the form samples = data_callback(xysamples).
      I.e. this can be a function to normalize them, or cache them
      before they are classified.
    """
    if vals is None:
        vals = [-1, 0, 1]

    if False:
        ## from mvpa2.misc.data_generators import *
        ## from mvpa2.clfs.svm import *
        ## from mvpa2.clfs.knn import *
        ## ds = dumb_feature_binary_dataset()
        dataset = normal_feature_dataset(nfeatures=2, nchunks=5,
                                         snr=10, nlabels=4, means=[ [0,1], [1,0], [1,1], [0,0] ])
        dataset.samples += dataset.sa.chunks[:, None]*0.1 # slight shifts for chunks ;)
        #dataset = normal_feature_dataset(nfeatures=2, nlabels=3, means=[ [0,1], [1,0], [1,1] ])
        #dataset = normal_feature_dataset(nfeatures=2, nlabels=2, means=[ [0,1], [1,0] ])
        #clf = LinearCSVMC(C=-1)
        clf = kNN(4)#LinearCSVMC(C=-1)
        clf.train(dataset)
        #clf = None
        #plot_decision_boundary_2d(ds, clf)
        targets = 'targets'
        regions = 'chunks'
        #maps = 'estimates'
        maps = 'targets'
        #maps = None #'targets'
        res = 50
        vals = [-1, 0, 1]
        data_callback=None
        pl.clf()

    if dataset.nfeatures != 2:
        raise ValueError('Can only plot a decision boundary in 2D')

    Pioff()
    a = pl.gca() # f.add_subplot(1,1,1)

    attrmap = None
    if clf:
        estimates_were_enabled = clf.ca.is_enabled('estimates')
        clf.ca.enable('estimates')

        if targets is None:
            targets = clf.get_space()
        # Lets reuse classifiers attrmap if it is good enough
        attrmap = clf._attrmap
        predictions = clf.predict(dataset)

    targets_sa_name = targets           # bad Yarik -- will rebind targets to actual values
    targets_lit = dataset.sa[targets_sa_name].value
    utargets_lit = dataset.sa[targets_sa_name].unique

    if not (attrmap is not None
            and len(attrmap)
            and set(clf._attrmap.keys()).issuperset(utargets_lit)):
        # create our own
        attrmap = AttributeMap(mapnumeric=True)

    targets = attrmap.to_numeric(targets_lit)
    utargets = attrmap.to_numeric(utargets_lit)

    vmin = min(utargets)
    vmax = max(utargets)
    cmap = pl.cm.RdYlGn                  # argument

#.........这里部分代码省略.........
开发者ID:PyMVPA,项目名称:PyMVPA,代码行数:103,代码来源:base.py

示例5: AttributeMap

# 需要导入模块: from mvpa2.misc.attrmap import AttributeMap [as 别名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 别名]
            print "Sorry - plotting of estimates isn't full supported for %s. " \
                  "Got exception %s" % (clf, e)
    elif maps == 'targets':
        map_values = attrmap.to_numeric(predictions_new).reshape(x.shape)
        a.imshow(map_values.T, **imshow_kwargs)
        #CS = a.contour(x, y, map_values, vals, zorder=6,
        #               linestyles=linestyles, extent=extent, colors='k')

    # Plot regions belonging to the same pair of attribute given
    # (e.g. chunks) and targets attribute
    if regions:
        chunks_sa = dataset.sa[regions]
        chunks_lit = chunks_sa.value
        uchunks_lit = chunks_sa.value
        chunks_attrmap = AttributeMap(mapnumeric=True)
        chunks = chunks_attrmap.to_numeric(chunks_lit)
        uchunks = chunks_attrmap.to_numeric(uchunks_lit)

        from matplotlib.delaunay.triangulate import Triangulation
        from matplotlib.patches import Polygon
        # Lets figure out convex halls for each chunk/label pair
        for target in utargets:
            t_mask = targets == target
            for chunk in uchunks:
                tc_mask = np.logical_and(t_mask,
                                        chunk == chunks)
                tc_samples = dataset.samples[tc_mask]
                tr = Triangulation(tc_samples[:, 0],
                                   tc_samples[:, 1])
                poly = pl.fill(tc_samples[tr.hull, 0],
                              tc_samples[tr.hull, 1],
开发者ID:PyMVPA,项目名称:PyMVPA,代码行数:33,代码来源:base.py

示例6: to_lightsvm_format

# 需要导入模块: from mvpa2.misc.attrmap import AttributeMap [as 别名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 别名]
def to_lightsvm_format(dataset, out, targets_attr='targets',
                       domain=None, am=None):
    """Export dataset into LightSVM format

    Parameters
    ----------
    dataset : Dataset
    out
      Anything understanding .write(string), such as `File`
    targets_attr : string, optional
      Name of the samples attribute to be output
    domain : {None, 'regression', 'binary', 'multiclass'}, optional
      What domain dataset belongs to.  If `None`, it would be deduced
      depending on the datatype ('regression' if float, classification
      in case of int or string, with 'binary'/'multiclass' depending on
      the number of unique targets)
    am : `AttributeMap` or None, optional
      Which mapping to use for storing the non-conformant targets. If
      None was provided, new one would be automagically generated
      depending on the given/deduced domain.

    Returns
    -------
    am

    LightSVM format is an ASCII representation with a single sample per
    each line::

      output featureIndex:featureValue ... featureIndex:featureValue

    where ``output`` is specific for a given domain:

    regression
      float number
    binary
      integer labels from {-1, 1}
    multiclass
      integer labels from {1..ds.targets_attr.nunique}

    """
    targets_a = dataset.sa[targets_attr]
    targets = targets_a.value

    # XXX this all below
    #  * might become cleaner
    #  * might be RF to become more generic to be used may be elsewhere as well

    if domain is None:
        if targets.dtype.kind in ['S', 'i']:
            if len(targets_a.unique) == 2:
                domain = 'binary'
            else:
                domain = 'multiclass'
        else:
            domain = 'regression'

    if domain in ['multiclass', 'binary']:
        # check if labels are appropriate and provide mapping if necessary
        utargets = targets_a.unique
        if domain == 'binary' and set(utargets) != set([-1, 1]):
            # need mapping
            if len(utargets) != 2:
                raise ValueError, \
                      "We need 2 unique targets in %s of %s. Got targets " \
                      "from set %s" % (targets_attr, dataset, utargets)
            if am is None:
                am = AttributeMap(dict(zip(utargets, [-1, 1])))
            elif set(am.keys()) != set([-1, 1]):
                raise ValueError, \
                      "Provided %s doesn't map into binary " \
                      "labels -1,+1" % (am,)
        elif domain == 'multiclass' \
                 and set(utargets) != set(range(1, len(utargets)+1)):
            if am is None:
                am = AttributeMap(dict(zip(utargets,
                                           range(1, len(utargets) + 1))))
            elif set(am.keys()) != set([-1, 1]):
                raise ValueError, \
                      "Provided %s doesn't map into multiclass " \
                      "range 1..N" % (am, )

    if am is not None:
        # map the targets
        targets = am.to_numeric(targets)

    for t, s in zip(targets, dataset.samples):
        out.write('%g %s\n'
                  % (t,
                     ' '.join(
                         '%i:%.8g' % (i, v)
                         for i,v in zip(range(1, dataset.nfeatures+1), s))))

    out.flush()                # push it out
    return am
开发者ID:arnaudsj,项目名称:PyMVPA,代码行数:96,代码来源:formats.py

示例7: test_attrmap

# 需要导入模块: from mvpa2.misc.attrmap import AttributeMap [as 别名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 别名]
def test_attrmap():
    map_default = {'eins': 0, 'zwei': 2, 'sieben': 1}
    map_custom = {'eins': 11, 'zwei': 22, 'sieben': 33}
    literal = ['eins', 'zwei', 'sieben', 'eins', 'sieben', 'eins']
    literal_nonmatching = ['uno', 'dos', 'tres']
    num_default = [0, 2, 1, 0, 1, 0]
    num_custom = [11, 22, 33, 11, 33, 11]

    # no custom mapping given
    am = AttributeMap()
    assert_false(am)
    ok_(len(am) == 0)
    assert_array_equal(am.to_numeric(literal), num_default)
    assert_array_equal(am.to_literal(num_default), literal)
    ok_(am)
    ok_(len(am) == 3)

    #
    # Tests for recursive mapping + preserving datatype
    class myarray(np.ndarray):
        pass

    assert_raises(KeyError, am.to_literal, [(1, 2), 2, 0])
    literal_fancy = [(1, 2), 2, [0], np.array([0, 1]).view(myarray)]
    literal_fancy_tuple = tuple(literal_fancy)
    literal_fancy_array = np.array(literal_fancy, dtype=object)

    for l in (literal_fancy, literal_fancy_tuple,
              literal_fancy_array):
        res = am.to_literal(l, recurse=True)
        assert_equal(res[0], ('sieben', 'zwei'))
        assert_equal(res[1], 'zwei')
        assert_equal(res[2], ['eins'])
        assert_array_equal(res[3], ['eins', 'sieben'])

        # types of result and subsequences should be preserved
        ok_(isinstance(res, l.__class__))
        ok_(isinstance(res[0], tuple))
        ok_(isinstance(res[1], str))
        ok_(isinstance(res[2], list))
        ok_(isinstance(res[3], myarray))

    # yet another example
    a = np.empty(1, dtype=object)
    a[0] = (0, 1)
    res = am.to_literal(a, recurse=True)
    ok_(isinstance(res[0], tuple))

    #
    # with custom mapping
    am = AttributeMap(map=map_custom)
    assert_array_equal(am.to_numeric(literal), num_custom)
    assert_array_equal(am.to_literal(num_custom), literal)

    # if not numeric nothing is mapped
    assert_array_equal(am.to_numeric(num_custom), num_custom)
    # even if the map doesn't fit
    assert_array_equal(am.to_numeric(num_default), num_default)

    # need to_numeric first
    am = AttributeMap()
    assert_raises(RuntimeError, am.to_literal, [1,2,3])
    # stupid args
    assert_raises(ValueError, AttributeMap, map=num_custom)

    # map mismatch
    am = AttributeMap(map=map_custom)
    if __debug__:
        # checked only in __debug__
        assert_raises(KeyError, am.to_numeric, literal_nonmatching)
    # needs reset and should work afterwards
    am.clear()
    assert_array_equal(am.to_numeric(literal_nonmatching), [2, 0, 1])
    # and now reverse
    am = AttributeMap(map=map_custom)
    assert_raises(KeyError, am.to_literal, num_default)

    # dict-like interface
    am = AttributeMap()

    ok_([(k, v) for k, v in am.iteritems()] == [])
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:83,代码来源:test_attrmap.py


注:本文中的mvpa2.misc.attrmap.AttributeMap.to_numeric方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。