当前位置: 首页>>代码示例>>Python>>正文


Python mri.fmri_dataset函数代码示例

本文整理汇总了Python中mvpa2.datasets.mri.fmri_dataset函数的典型用法代码示例。如果您正苦于以下问题:Python fmri_dataset函数的具体用法?Python fmri_dataset怎么用?Python fmri_dataset使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了fmri_dataset函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_nifti_dataset_from3_d

def test_nifti_dataset_from3_d():
    """Test NiftiDataset based on 3D volume(s)
    """
    tssrc = os.path.join(pymvpa_dataroot, "bold.nii.gz")
    masrc = os.path.join(pymvpa_dataroot, "mask.nii.gz")

    # Test loading of 3D volumes
    # by default we are enforcing 4D, testing here with the demo 3d mask
    ds = fmri_dataset(masrc, mask=masrc, targets=1)
    assert_equal(len(ds), 1)

    import nibabel

    plain_data = nibabel.load(masrc).get_data()
    # Lets check if mapping back works as well
    assert_array_equal(plain_data, map2nifti(ds).get_data().reshape(plain_data.shape))

    # test loading from a list of filenames

    # for now we should fail if trying to load a mix of 4D and 3D volumes
    assert_raises(ValueError, fmri_dataset, (masrc, tssrc), mask=masrc, targets=1)

    # Lets prepare some custom NiftiImage
    dsfull = fmri_dataset(tssrc, mask=masrc, targets=1)
    ds_selected = dsfull[3]
    nifti_selected = map2nifti(ds_selected)

    # Load dataset from a mix of 3D volumes
    # (given by filenames and NiftiImages)
    labels = [123, 2, 123]
    ds2 = fmri_dataset((masrc, masrc, nifti_selected), mask=masrc, targets=labels)
    assert_equal(ds2.nsamples, 3)
    assert_array_equal(ds2.samples[0], ds2.samples[1])
    assert_array_equal(ds2.samples[2], dsfull.samples[3])
    assert_array_equal(ds2.targets, labels)
开发者ID:schoeke,项目名称:PyMVPA,代码行数:35,代码来源:test_niftidataset.py

示例2: loadrundata

def loadrundata(p, s, r, m=None, c=None):
    # inputs:
    # p: paths list
    # s: string representing subject ('LMVPA001')
    # r: run ID ('Run1')
    from os.path import join as pjoin
    from mvpa2.datasets import eventrelated as er
    from mvpa2.datasets.mri import fmri_dataset
    from mvpa2.datasets.sources import bids as bids


    # bfn = pjoin(p[0], 'data', s, 'func', 'extra', s+'_'+r+'_mc.nii.gz')
    # motion corrected and coregistered
    bfn = pjoin(p[0], 'data', s, 'func', s + '_' + r + '.nii.gz')
    if m is not None:
        m = pjoin(p[0], 'data', s, 'masks', s+'_'+m+'.nii.gz')
        d = fmri_dataset(bfn, chunks=int(r.split('n')[1]), mask=m)
    else:
        d = fmri_dataset(bfn, chunks=int(r.split('n')[1]))
    # This line-- should be different if we're doing GLM, etc.
    efn = pjoin(p[0], 'data', s, 'func', s + '_' + r + '.tsv')
    fe = bids.load_events(efn)
    if c is None:
        tmpe = events2dict(fe)
        c = tmpe.keys()
    if isinstance(c, basestring):
        # must be a list/tuple/array for the logic below
        c = [c]
    for ci in c:
        e = adjustevents(fe, ci)
        d = er.assign_conditionlabels(d, e, noinfolabel='rest', label_attr=ci)
    return d
开发者ID:njchiang,项目名称:LanguageMVPA,代码行数:32,代码来源:lmvpautils.py

示例3: test_multiple_calls

def test_multiple_calls():
    """Test if doing exactly the same operation twice yields the same result
    """
    data = fmri_dataset(samples=os.path.join(pymvpa_dataroot,'example4d.nii.gz'),
                        targets=1, sprefix='abc')
    data2 = fmri_dataset(samples=os.path.join(pymvpa_dataroot,'example4d.nii.gz'),
                         targets=1, sprefix='abc')
    assert_array_equal(data.a.abc_eldim, data2.a.abc_eldim)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:8,代码来源:test_niftidataset.py

示例4: test_er_nifti_dataset

def test_er_nifti_dataset():
    # setup data sources
    tssrc = os.path.join(pymvpa_dataroot, u"bold.nii.gz")
    evsrc = os.path.join(pymvpa_dataroot, "fslev3.txt")
    masrc = os.path.join(pymvpa_dataroot, "mask.nii.gz")
    evs = FslEV3(evsrc).to_events()
    # load timeseries
    ds_orig = fmri_dataset(tssrc)
    # segment into events
    ds = eventrelated_dataset(ds_orig, evs, time_attr="time_coords")

    # we ask for boxcars of 9s length, and the tr in the file header says 2.5s
    # hence we should get round(9.0/2.4) * np.prod((1,20,40) == 3200 features
    assert_equal(ds.nfeatures, 3200)
    assert_equal(len(ds), len(evs))
    # the voxel indices are reflattened after boxcaring , but still 3D
    assert_equal(ds.fa.voxel_indices.shape, (ds.nfeatures, 3))
    # and they have been broadcasted through all boxcars
    assert_array_equal(ds.fa.voxel_indices[:800], ds.fa.voxel_indices[800:1600])
    # each feature got an event offset value
    assert_array_equal(ds.fa.event_offsetidx, np.repeat([0, 1, 2, 3], 800))
    # check for all event attributes
    assert_true("onset" in ds.sa)
    assert_true("duration" in ds.sa)
    assert_true("features" in ds.sa)
    # check samples
    origsamples = _load_anyimg(tssrc)[0]
    for i, onset in enumerate([value2idx(e["onset"], ds_orig.sa.time_coords, "floor") for e in evs]):
        assert_array_equal(ds.samples[i], origsamples[onset : onset + 4].ravel())
        assert_array_equal(ds.sa.time_indices[i], np.arange(onset, onset + 4))
        assert_array_equal(ds.sa.time_coords[i], np.arange(onset, onset + 4) * 2.5)
        for evattr in [a for a in ds.sa if a.count("event_attrs") and not a.count("event_attrs_event")]:
            assert_array_equal(evs[i]["_".join(evattr.split("_")[2:])], ds.sa[evattr].value[i])
    # check offset: only the last one exactly matches the tr
    assert_array_equal(ds.sa.orig_offset, [1, 1, 0])

    # map back into voxel space, should ignore addtional features
    nim = map2nifti(ds)
    # origsamples has t,x,y,z
    assert_equal(nim.get_shape(), origsamples.shape[1:] + (len(ds) * 4,))
    # check shape of a single sample
    nim = map2nifti(ds, ds.samples[0])
    # pynifti image has [t,]z,y,x
    assert_equal(nim.get_shape(), (40, 20, 1, 4))

    # and now with masking
    ds = fmri_dataset(tssrc, mask=masrc)
    ds = eventrelated_dataset(ds, evs, time_attr="time_coords")
    nnonzero = len(_load_anyimg(masrc)[0].nonzero()[0])
    assert_equal(nnonzero, 530)
    # we ask for boxcars of 9s length, and the tr in the file header says 2.5s
    # hence we should get round(9.0/2.4) * np.prod((1,20,40) == 3200 features
    assert_equal(ds.nfeatures, 4 * 530)
    assert_equal(len(ds), len(evs))
    # and they have been broadcasted through all boxcars
    assert_array_equal(ds.fa.voxel_indices[:nnonzero], ds.fa.voxel_indices[nnonzero : 2 * nnonzero])
开发者ID:schoeke,项目名称:PyMVPA,代码行数:56,代码来源:test_niftidataset.py

示例5: test_nifti_mapper

def test_nifti_mapper(filename):
    """Basic testing of map2Nifti
    """
    skip_if_no_external('scipy')

    import nibabel
    data = fmri_dataset(samples=os.path.join(pymvpa_dataroot,'example4d.nii.gz'),
                        targets=[1,2])

    # test mapping of ndarray
    vol = map2nifti(data, np.ones((294912,), dtype='int16'))
    if externals.versions['nibabel'] >= '1.2': 
        vol_shape = vol.shape
    else:
        vol_shape = vol.get_shape()
    assert_equal(vol_shape, (128, 96, 24))
    assert_true((vol.get_data() == 1).all())
    # test mapping of the dataset
    vol = map2nifti(data)
    if externals.versions['nibabel'] >= '1.2':
        vol_shape = vol.shape
    else:
        vol_shape = vol.get_shape()
    assert_equal(vol_shape, (128, 96, 24, 2))
    ok_(isinstance(vol, data.a.imgtype))

    # test providing custom imgtypes
    vol = map2nifti(data, imgtype=nibabel.Nifti1Pair)
    if externals.versions['nibabel'] >= '1.2':
        vol_shape = vol.shape
    else:
        vol_shape = vol.get_shape()
    ok_(isinstance(vol, nibabel.Nifti1Pair))

    # Lets generate a dataset using an alternative format (MINC)
    # and see if type persists
    volminc = nibabel.MincImage(vol.get_data(),
                                vol.get_affine(),
                                vol.get_header())
    ok_(isinstance(volminc, nibabel.MincImage))
    dsminc = fmri_dataset(volminc, targets=1)
    ok_(dsminc.a.imgtype is nibabel.MincImage)
    ok_(isinstance(dsminc.a.imghdr, nibabel.minc.MincImage.header_class))

    # Lets test if we could save/load now into Analyze volume/dataset
    if externals.versions['nibabel'] < '1.1.0':
        raise SkipTest('nibabel prior 1.1.0 had an issue with types comprehension')
    volanal = map2nifti(dsminc, imgtype=nibabel.AnalyzeImage) # MINC has no 'save' capability
    ok_(isinstance(volanal, nibabel.AnalyzeImage))
    volanal.to_filename(filename)
    dsanal = fmri_dataset(filename, targets=1)
    # this one is tricky since it might become Spm2AnalyzeImage
    ok_('AnalyzeImage' in str(dsanal.a.imgtype))
    ok_('AnalyzeHeader' in str(dsanal.a.imghdr.__class__))
    volanal_ = map2nifti(dsanal)
    ok_(isinstance(volanal_, dsanal.a.imgtype)) # type got preserved
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:56,代码来源:test_niftidataset.py

示例6: setUp

    def setUp(self):
        self.tmpdir = mkdtemp()

        data_ = fmri_dataset(datafn)
        datafn_hdf5 = pjoin(self.tmpdir, 'datain.hdf5')
        h5save(datafn_hdf5, data_)

        mask_ = fmri_dataset(maskfn)
        maskfn_hdf5 = pjoin(self.tmpdir, 'maskfn.hdf5')
        h5save(maskfn_hdf5, mask_)

        self.datafn = [datafn, datafn_hdf5]
        self.outfn = [pjoin(self.tmpdir, 'output') + ext
                      for ext in ['.nii.gz', '.nii', '.hdf5', '.h5']]
        self.maskfn = ['', maskfn, maskfn_hdf5]
开发者ID:PyMVPA,项目名称:PyMVPA,代码行数:15,代码来源:test_cmdline_ttest.py

示例7: test_surface_voxel_query_engine

    def test_surface_voxel_query_engine(self):
        vol_shape = (10, 10, 10, 1)
        vol_affine = np.identity(4)
        vol_affine[0, 0] = vol_affine[1, 1] = vol_affine[2, 2] = 5
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        # make the surfaces
        sphere_density = 10

        outer = surf.generate_sphere(sphere_density) * 25. + 15
        inner = surf.generate_sphere(sphere_density) * 20. + 15

        vs = volsurf.VolSurfMaximalMapping(vg, inner, outer)

        radius = 10

        for fallback, expected_nfeatures in ((True, 1000), (False, 183)):
            voxsel = surf_voxel_selection.voxel_selection(vs, radius)
            qe = SurfaceVoxelsQueryEngine(voxsel, fallback_euclidian_distance=fallback)

            m = _Voxel_Count_Measure()

            sl = Searchlight(m, queryengine=qe)

            data = np.random.normal(size=vol_shape)
            img = nb.Nifti1Image(data, vol_affine)
            ds = fmri_dataset(img)

            sl_map = sl(ds)

            counts = sl_map.samples

            assert_true(np.all(np.logical_and(5 <= counts, counts <= 18)))
            assert_equal(sl_map.nfeatures, expected_nfeatures)
开发者ID:armaneshaghi,项目名称:PyMVPA,代码行数:34,代码来源:test_surfing_voxelselection.py

示例8: prepare_subject_for_hyperalignment

def prepare_subject_for_hyperalignment(subject_label, bold_fname, mask_fname, out_dir):
    print('Loading data %s with mask %s' % (bold_fname, mask_fname))
    ds = fmri_dataset(samples=bold_fname, mask=mask_fname)
    zscore(ds, chunks_attr=None)
    out_fname = os.path.join(out_dir, 'sub-%s_data.hdf5' % subject_label)
    print('Saving to %s' % out_fname)
    h5save(out_fname, ds)
开发者ID:BIDS-Apps,项目名称:hyperalignment,代码行数:7,代码来源:run.py

示例9: load_example_fmri_dataset

def load_example_fmri_dataset(name='1slice', literal=False):
    """Load minimal fMRI dataset that is shipped with PyMVPA."""
    from mvpa2.datasets.eventrelated import events2sample_attr
    from mvpa2.datasets.sources.openfmri import OpenFMRIDataset
    from mvpa2.datasets.mri import fmri_dataset
    from mvpa2.misc.io import SampleAttributes

    basedir = os.path.join(pymvpa_dataroot, 'openfmri')
    mask = {'1slice': os.path.join(pymvpa_dataroot, 'mask.nii.gz'),
            '25mm': os.path.join(basedir, 'sub001', 'masks', '25mm',
                    'brain.nii.gz')}[name]

    if literal:
        model = 1
        subj = 1
        openfmri = OpenFMRIDataset(basedir)
        ds = openfmri.get_model_bold_dataset(model, subj, flavor=name,
                                             mask=mask, noinfolabel='rest')
        # re-imagine the global time_coords of a concatenated time series
        # this is only for the purpose of keeping the example data in the
        # exact same shape as it has always been. in absolute terms this makes no
        # sense as there is no continuous time in this dataset
        ds.sa['run_time_coords'] = ds.sa.time_coords
        ds.sa['time_coords'] = np.arange(len(ds)) * 2.5
    else:
        if name == '25mm':
            raise ValueError("The 25mm dataset is no longer available with "
                             "numerical labels")
        attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt'))
        ds = fmri_dataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'),
                          targets=attr.targets, chunks=attr.chunks,
                          mask=mask)

    return ds
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:34,代码来源:data_generators.py

示例10: nifti_to_dataset

def nifti_to_dataset(nifti_file, attr_file=None, annot_file=None, subject_id=None, session_id=None):

    logger.info("Loading fmri dataset: {}".format(nifti_file))
    ds = fmri_dataset(samples=nifti_file)

    if attr_file is not None:
        logger.info("Loading attributes: {}".format(attr_file))
        attr = ColumnData(attr_file)
        valid = min(ds.nsamples, attr.nrows)
        valid = int(valid / 180) * 180  # FIXME: ...
        print valid
        ds = ds[:valid, :]
        for k in attr.keys():
            ds.sa[k] = attr[k][:valid]

    if annot_file is not None:
        logger.info("Loading annotation: {}".format(annot_file))
        annot = nibabel.freesurfer.io.read_annot(annot_file)
        ds.fa["annotation"] = [annot[2][i] for i in annot[0]]  # FIXME: roi cannot be a fa

    if subject_id is not None:
        ds.sa["subject_id"] = [subject_id] * ds.nsamples

    if session_id is not None:
        ds.sa["session_id"] = [session_id] * ds.nsamples

    return ds
开发者ID:afloren,项目名称:neurometrics,代码行数:27,代码来源:ANOVA.py

示例11: test_fmridataset

def test_fmridataset():
    # full-blown fmri dataset testing
    import nibabel
    maskimg = nibabel.load(os.path.join(pymvpa_dataroot, 'mask.nii.gz'))
    data = maskimg.get_data().copy()
    data[data>0] = np.arange(1, np.sum(data) + 1)
    maskimg = nibabel.Nifti1Image(data, None, maskimg.get_header())
    ds = fmri_dataset(samples=os.path.join(pymvpa_dataroot,'bold.nii.gz'),
                      mask=maskimg,
                      sprefix='subj1',
                      add_fa={'myintmask': maskimg})
    # content
    assert_equal(len(ds), 1452)
    assert_true(ds.nfeatures, 530)
    assert_array_equal(sorted(ds.sa.keys()),
            ['time_coords', 'time_indices'])
    assert_array_equal(sorted(ds.fa.keys()),
            ['myintmask', 'subj1_indices'])
    assert_array_equal(sorted(ds.a.keys()),
            ['imghdr', 'imgtype', 'mapper', 'subj1_dim', 'subj1_eldim'])
    # vol extent
    assert_equal(ds.a.subj1_dim, (40, 20, 1))
    # check time
    assert_equal(ds.sa.time_coords[-1], 3627.5)
    # non-zero mask values
    assert_array_equal(ds.fa.myintmask, np.arange(1, ds.nfeatures + 1))
    # we know that imgtype must be:
    ok_(ds.a.imgtype is nibabel.Nifti1Image)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:28,代码来源:test_niftidataset.py

示例12: test_volgeom_masking

    def test_volgeom_masking(self):
        maskstep = 5
        vg = volgeom.VolGeom((2 * maskstep, 2 * maskstep, 2 * maskstep), np.identity(4))

        mask = vg.get_empty_array()
        sh = vg.shape

        # mask a subset of the voxels
        rng = range(0, sh[0], maskstep)
        for i in rng:
            for j in rng:
                for k in rng:
                    mask[i, j, k] = 1

        # make a new volgeom instance
        vg = volgeom.VolGeom(vg.shape, vg.affine, mask)

        data = vg.get_masked_nifti_image(nt=1)
        msk = vg.get_masked_nifti_image()
        dset = fmri_dataset(data, mask=msk)
        vg_dset = volgeom.from_any(dset)

        # ensure that the mask is set properly and
        assert_equal(vg.nvoxels, vg.nvoxels_mask * maskstep ** 3)
        assert_equal(vg_dset, vg)

        dilates = range(0, 8, 2)
        nvoxels_masks = [] # keep track of number of voxels for each size
        for dilate in dilates:
            covers_full_volume = dilate * 2 >= maskstep * 3 ** .5 + 1

            # constr gets values: None, Sphere(0), 2, Sphere(2), ...
            for i, constr in enumerate([Sphere, lambda x:x if x else None]):
                dilater = constr(dilate)

                img_dilated = vg.get_masked_nifti_image(dilate=dilater)
                data = img_dilated.get_data()

                assert_array_equal(data, vg.get_masked_array(dilate=dilater))
                n = np.sum(data)

                # number of voxels in mask is increasing
                assert_true(all(n >= p for p in nvoxels_masks))

                # results should be identical irrespective of constr
                if i == 0:
                    # - first call with this value of dilate: has to be more
                    #   voxels than very previous dilation value, unless the
                    #   full volume is covered - then it can be equal too
                    # - every next call: ensure size matches
                    cmp = lambda x, y:(x >= y if covers_full_volume else x > y)
                    assert_true(all(cmp(n, p) for p in nvoxels_masks))
                    nvoxels_masks.append(n)
                else:
                    # same size as previous call
                    assert_equal(n, nvoxels_masks[-1])

                # if dilate is not None or zero, then it should
                # have selected all the voxels if the radius is big enough
                assert_equal(np.sum(data) == vg.nvoxels, covers_full_volume)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:60,代码来源:test_surfing.py

示例13: test_fmri_to_cosmo

def test_fmri_to_cosmo():
    skip_if_no_external('nibabel')
    from mvpa2.datasets.mri import fmri_dataset
    # test exporting an fMRI dataset to CoSMoMVPA
    pymvpa_ds = fmri_dataset(
        samples=pathjoin(pymvpa_dataroot, 'example4d.nii.gz'),
        targets=[1, 2], sprefix='voxel')
    cosmomvpa_struct = cosmo.map2cosmo(pymvpa_ds)
    _assert_set_equal(cosmomvpa_struct.keys(), ['a', 'fa', 'sa', 'samples'])

    a_dict = dict(_obj2tup(cosmomvpa_struct['a']))
    mri_keys = ['imgaffine', 'voxel_eldim', 'voxel_dim']
    _assert_subset(mri_keys, a_dict.keys())

    for k in mri_keys:
        c_value = a_dict[k]
        p_value = pymvpa_ds.a[k].value

        if isinstance(p_value, tuple):
            c_value = c_value.ravel()
            p_value = np.asarray(p_value).ravel()

        assert_array_almost_equal(c_value, p_value)

    fa_dict = dict(_obj2tup(cosmomvpa_struct['fa']))
    fa_keys = ['voxel_indices']
    _assert_set_equal(fa_dict.keys(), fa_keys)
    for k in fa_keys:
        assert_array_almost_equal(fa_dict[k].T, pymvpa_ds.fa[k].value)
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:29,代码来源:test_cosmo.py

示例14: test_queryengine_io

    def test_queryengine_io(self, fn):
        skip_if_no_external("h5py")
        from mvpa2.base.hdf5 import h5save, h5load

        vol_shape = (10, 10, 10, 1)
        vol_affine = np.identity(4)
        vg = volgeom.VolGeom(vol_shape, vol_affine)

        # generate some surfaces,
        # and add some noise to them
        sphere_density = 10
        outer = surf.generate_sphere(sphere_density) * 5 + 8
        inner = surf.generate_sphere(sphere_density) * 3 + 8
        radius = 5.0

        add_fa = ["center_distances", "grey_matter_position"]
        qe = disc_surface_queryengine(radius, vg, inner, outer, add_fa=add_fa)
        ds = fmri_dataset(vg.get_masked_nifti_image())

        # the following is not really a strong requirement. XXX remove?
        assert_raises(ValueError, lambda: qe[qe.ids[0]])

        # check that after training it behaves well
        qe.train(ds)
        i = qe.ids[0]
        try:
            m = qe[i]
        except ValueError, e:
            raise AssertionError(
                "Failed to query %r from %r after training on %r. " "Exception was: %r" % (i, qe, ds, e)
            )
开发者ID:beausievers,项目名称:PyMVPA,代码行数:31,代码来源:test_surfing_voxelselection.py

示例15: load_example_fmri_dataset

def load_example_fmri_dataset(name="1slice", literal=False):
    """Load minimal fMRI dataset that is shipped with PyMVPA."""
    from mvpa2.datasets.sources.openfmri import OpenFMRIDataset
    from mvpa2.datasets.mri import fmri_dataset
    from mvpa2.misc.io import SampleAttributes

    basedir = op.join(pymvpa_dataroot, "haxby2001")
    mask = {
        "1slice": op.join(pymvpa_dataroot, "mask.nii.gz"),
        "25mm": op.join(basedir, "sub001", "masks", "25mm", "brain.nii.gz"),
    }[name]

    if literal:
        model = 1
        subj = 1
        openfmri = OpenFMRIDataset(basedir)
        ds = openfmri.get_model_bold_dataset(model, subj, flavor=name, mask=mask, noinfolabel="rest")
        # re-imagine the global time_coords of a concatenated time series
        # this is only for the purpose of keeping the example data in the
        # exact same shape as it has always been. in absolute terms this makes no
        # sense as there is no continuous time in this dataset
        ds.sa["run_time_coords"] = ds.sa.time_coords
        ds.sa["time_coords"] = np.arange(len(ds)) * 2.5
    else:
        if name == "25mm":
            raise ValueError("The 25mm dataset is no longer available with " "numerical labels")
        attr = SampleAttributes(op.join(pymvpa_dataroot, "attributes.txt"))
        ds = fmri_dataset(
            samples=op.join(pymvpa_dataroot, "bold.nii.gz"), targets=attr.targets, chunks=attr.chunks, mask=mask
        )

    return ds
开发者ID:hwd15508,项目名称:nidata,代码行数:32,代码来源:native.py


注:本文中的mvpa2.datasets.mri.fmri_dataset函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。