当前位置: 首页>>代码示例>>Python>>正文


Python SplitClassifier.clone方法代码示例

本文整理汇总了Python中mvpa2.clfs.meta.SplitClassifier.clone方法的典型用法代码示例。如果您正苦于以下问题:Python SplitClassifier.clone方法的具体用法?Python SplitClassifier.clone怎么用?Python SplitClassifier.clone使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mvpa2.clfs.meta.SplitClassifier的用法示例。


在下文中一共展示了SplitClassifier.clone方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_split_classifier

# 需要导入模块: from mvpa2.clfs.meta import SplitClassifier [as 别名]
# 或者: from mvpa2.clfs.meta.SplitClassifier import clone [as 别名]
    def test_split_classifier(self):
        ds = self.data_bin_1
        clf = SplitClassifier(clf=SameSignClassifier(),
                enable_ca=['stats', 'training_stats',
                               'feature_ids'])
        clf.train(ds)                   # train the beast
        error = clf.ca.stats.error
        tr_error = clf.ca.training_stats.error

        clf2 = clf.clone()
        cv = CrossValidation(clf2, NFoldPartitioner(), postproc=mean_sample(),
            enable_ca=['stats', 'training_stats'])
        cverror = cv(ds)
        cverror = cverror.samples.squeeze()
        tr_cverror = cv.ca.training_stats.error

        self.assertEqual(error, cverror,
                msg="We should get the same error using split classifier as"
                    " using CrossValidation. Got %s and %s"
                    % (error, cverror))

        self.assertEqual(tr_error, tr_cverror,
                msg="We should get the same training error using split classifier as"
                    " using CrossValidation. Got %s and %s"
                    % (tr_error, tr_cverror))

        self.assertEqual(clf.ca.stats.percent_correct,
                             100,
                             msg="Dummy clf should train perfectly")
        # CV and SplitClassifier should get the same confusion matrices
        assert_array_equal(clf.ca.stats.matrix,
                           cv.ca.stats.matrix)

        self.assertEqual(len(clf.ca.stats.sets),
                             len(ds.UC),
                             msg="Should have 1 confusion per each split")
        self.assertEqual(len(clf.clfs), len(ds.UC),
                             msg="Should have number of classifiers equal # of epochs")
        self.assertEqual(clf.predict(ds.samples), list(ds.targets),
                             msg="Should classify correctly")

        # feature_ids must be list of lists, and since it is not
        # feature-selecting classifier used - we expect all features
        # to be utilized
        #  NOT ANYMORE -- for BoostedClassifier we have now union of all
        #  used features across slave classifiers. That makes
        #  semantics clear. If you need to get deeper -- use upcoming
        #  harvesting facility ;-)
        # self.assertEqual(len(clf.feature_ids), len(ds.uniquechunks))
        # self.assertTrue(np.array([len(ids)==ds.nfeatures
        #                         for ids in clf.feature_ids]).all())

        # Just check if we get it at all ;-)
        summary = clf.summary()
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:56,代码来源:test_clf.py


注:本文中的mvpa2.clfs.meta.SplitClassifier.clone方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。