本文整理汇总了Python中multiprocessing.Process.close方法的典型用法代码示例。如果您正苦于以下问题:Python Process.close方法的具体用法?Python Process.close怎么用?Python Process.close使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类multiprocessing.Process
的用法示例。
在下文中一共展示了Process.close方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: SocketServer
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
class SocketServer(asyncore.dispatcher):
def __init__(self, host, port):
self.clients = Clients()
asyncore.dispatcher.__init__(self)
self.port = port
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.set_reuse_addr()
self.bind((host, port))
self.bind = host
self.listen(5)
def __sock_process(self, socket):
self.clients.append(socket)
self.socketHandler = SocketHandler(self, socket)
#handle when a connection is established and a connect() has been issued, add client
def handle_accept(self):
pair = self.accept()
if pair != None:
socket, addr = pair
self.s = Process(target=self.__sock_process(socket), args=[])
try:
self.s.start()
except:
self.s.terminate()
#handle when connection is closed and remove client
def handle_close(self):
self.clients.remove_all()
self.s.close()
print 'Sockets closed'
示例2: tryforkwindows
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
def tryforkwindows(n):
if n == 1:
print('Parent process %s.' % os.getpid())
sec = 3
p = Process(target=run_proc, args=('test', sec))
print('Child process will start ...')
p.start()
childlast = 15
while childlast >= 0:
print('# Parent (%s) and its child (%s).' % (os.getpid(), p.pid))
time.sleep(1)
childlast -= 1
# Not successful!
# os.kill(p.pid, signal.CTRL_C_EVENT)
# p.join()
print('Parent (%s) kills child (%s)' % (os.getpid(), p.pid))
p.terminate()
print('Child process end.')
if n == 2:
print('Parent process %s.' % os.getpid())
process_num = 16
p = Pool(process_num)
for i in range(process_num):
p.apply_async(long_time_task, args=(i,))
print('Waiting for all subprocesses done...')
p.close()
p.join()
print('All subprocesses done.')
if n == 3:
cmd = 'ping www.baidu.com'
print(cmd)
r = subprocess.call(cmd.split())
print('Exit code = ', r)
if n == 4:
q = Queue()
pw = Process(target=q_write, args=(q,))
pr = Process(target=q_read, args=(q,))
pr.start()
pw.start()
pw.join()
pr.terminate()
return
示例3: long_time_task
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
import os, time, random
def long_time_task(name):
print('Run task %s (%s)...' % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('Task %s runs %0.2f seconds.' % (name, (end - start)))
if __name__=='__main__':
print('Parent process %s.' % os.getpid())
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print('Waiting for all subprocesses done...')
p.close()
p.join()
print('All subprocesses done.')
"""对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。
请注意输出的结果,task 0,1,2,3是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:
p = Pool(5)
就可以同时跑5个进程。
由于Pool的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。"""
#子进程
"""很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。
subprocess模块可以让我们启动一个子进程,然后控制其输入和输出
下面的例子演示了如何在Python代码中运行命令nslookup www.python.org,这和命令行直接运行的效果是一样的:"""
import subprocess
print('$ nslookup www.python.org')
r = subprocess.call(['nslookup','www.python.org'])
示例4: long_time_task
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
def long_time_task(name):
print "Run task %s (%s)" % (name, os.getpid())
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print "Task %s runs %0.2f seconds" % (name, (end - start))
if __name__ == "__main__":
print "Parent process %s" % os.getpid()
p = Pool(9)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print "Wait for all subprocess done..."
p.close() # close 后进不能在加入process
p.join()
print "All subprocess end..."
# 进程间通讯 Queue 或 Pipes
from multiprocessing import Process, Queue
import os, random, time
def write(q):
for value in ["a", "b", "c"]:
print "Put %s to queue..." % value
q.put(value)
time.sleep(4)
示例5: long_time_task
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
print '\n进程池'
def long_time_task(name):
print 'Run task %s (%s)...' %(name, os.getpid())
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print 'Task %s runs %0.2f seconds.' %(name, (end - start))
if __name__ == '__main__': #表示程序作为主程序执行,而不是使用import作为模块导入
print 'Parents process %s.' %os.getpid()
p = Pool()
for i in range(9):
p.apply_async(long_time_task, args = (i, ))
print 'Waiting for all subprocesses done...'
p.close() # 调用close()之后就不能继续添加新的Process了。
p.join() # 对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close()。
print 'All subprocesses done.'
print '\n多线程'
import threading
# 新线程执行代码:
def loop():
print 'thread %s is running...' %threading.current_thread().name
n = 0
while n < 5:
n = n + 1
print 'thread %s >>> %s ' %(threading.current_thread().name, n)
time.sleep(1)
示例6: long_time_task
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
import os, time, random
def long_time_task(name):
print('run task %s (%s)...' % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('task %s runs %0.2f seconds.' % (name, (end- start)))
if __name__ == '__main__':
print('parent process %s.' % os.getpid())
p = Pool(4) # run 4 processes each time
for i in range(5):
p.apply_async(long_time_task, args = (i,))
print('waiting for all subprocesses done...')
p.close() # close is necessary before join
p.join()
print('all subprocesses done.')
# When running this in spyder, it keeps waiting like forever.
# It works in cmd.
# open cmd
# python D:\python\python\Note7-liao.py
# (you need to input the absolute path)
#%%
# subprocess
import subprocess
示例7: long_time_task
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
import os,time,random
def long_time_task(name):
print('Run task %s (%s)...' %(name,os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('Tasks %s runs %0.2f sconds.' %(name,(end-start)))
if __name__=='__main__':
print('Parent process %s.' % os.getpid())
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task,args=(i,))
print('Waiting for all subprocesses done...')
p.close() #调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。
p.join() #对Pool对象调用join()方法会等待所有子进程执行完毕
print('All subprocesses done.')
#task 0,1,2,3是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。
#由于Pool的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。
#子进程
print("==============subprocess=====================")
import subprocess
r=subprocess.call(['nslookup','www.baidu.com'])
print('Exit code:',r)
#进程间通信
示例8: print
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
if __name__ == '__main__':
# 创建进程
print('Parent process %s.' % (os.getpid()))
p = Process(target=run_proc, args=('test',)) # 创建子进程,需要函数,参数是元组
print('Child process will start.')
p.start() # 启动进程
p.join() # 等待子进程结束才继续运行
print('Child process end.')
# 进程池
print('Parent process %s.' % os.getpid())
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print('Waiting for all subprocesses done.')
p.close() # close 之后不能够再添加新的进程
p.join() # 在join之前必须调用close
print('All done')
# 子进程
print('$ nslookup www.python.org')
r = subprocess.call(['nslookup', 'www.python.org'])
print('Exit code:', r)
# 进程间通信
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
pw.start() # 启动写进程
pr.start() # 启动读进程
示例9: long_time_task
# 需要导入模块: from multiprocessing import Process [as 别名]
# 或者: from multiprocessing.Process import close [as 别名]
'''若要启动大量子进程,可用进程池的方式批量创建子进程'''
from multiprocessing import Pool
def long_time_task(name):
print('Run task %s (%s)...' % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('Task %s runs %0.2f seconds.' % (name, (end - start)))
if __name__ =='__main__':
print ('parent process %s.' % os.getpid()) #os.getpid()可获取父进程的id
p=Pool(3) #创建一个进程池p,包含3个进程
for i in range(5):
p.apply_async(long_time_task,args=(i,))
print('Waiting for all subprocesses done...')
p.close() #关闭pool
p.join() #等待所有子进程结束后在继续往下执行,用于进程间同步
print('All subprocesses done')
'''subprocess模块可方便地启动一个子进程,然后控制其输入和输出'''
import subprocess
print('$ nslookup www.python.org')
r=subprocess.call(['nslookup','www.python.org'])
print('Exit code:', r)
'''进程间通信,multiprocessing模块包装了底层的机制,提供了Quene,Pipes
等多种方式交换数据'''
from multiprocessing import Process,Queue
def write(q):
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']: