本文整理汇总了Python中multiprocessing.Pool.daemon方法的典型用法代码示例。如果您正苦于以下问题:Python Pool.daemon方法的具体用法?Python Pool.daemon怎么用?Python Pool.daemon使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类multiprocessing.Pool
的用法示例。
在下文中一共展示了Pool.daemon方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _multiprocess_files
# 需要导入模块: from multiprocessing import Pool [as 别名]
# 或者: from multiprocessing.Pool import daemon [as 别名]
def _multiprocess_files(self):
'''Creates a pool to run through several files at once'''
pool = Pool(processes=self._optional_params[LSC.PROCESSOR_COUNT])
pool.daemon = True
# First copy any remote files as needed and create final file list
if (self._user_params.get(LSC.LEVEL, None)
and not self._are_logs_archived(self._user_params.get(LSC.DATE, None))):
if (self._optional_params.get(LSC.FORCE_COPY, False)
or socket.gethostname() != self._get_box_from_level(self._user_params.get(LSC.LEVEL, None))):
file_list = pool.map(self._get_log_file, self._file_list)
pool.close()
pool.join()
self._file_list = sorted(filter(lambda x: x != '', file_list))
LOGGER.debug('Final file list: %s', self._file_list)
if self._file_list == []:
LOGGER.error('No files found to process.')
return None
pool = Pool(processes=self._optional_params[LSC.PROCESSOR_COUNT])
pool.daemon = True
results = pool.map(self._process_file, self._file_list)
pool.close()
pool.join()
return results
示例2: asyn_load_batch_images
# 需要导入模块: from multiprocessing import Pool [as 别名]
# 或者: from multiprocessing.Pool import daemon [as 别名]
def asyn_load_batch_images(args):
params=args[0][0]
pool = Pool(params["n_pool"])
pool.daemon=True
results = pool.map(load_batch_wrapper,args)
pool.close()
pool.join()
return results
示例3: run_face_extraction
# 需要导入模块: from multiprocessing import Pool [as 别名]
# 或者: from multiprocessing.Pool import daemon [as 别名]
def run_face_extraction(iterable, face_link, video_link):
calibration = 95+27
processes = args.processes
pool = Pool(processes=processes, maxtasksperchild=100)
pool.daemon = True
skip = True
files = [filename for filename in os.listdir(face_link)]
id = [file[:24] for file in files]
parsed = set(id)
for i, item in enumerate(iterable):
if str(item['_id']) == '58dd5bf05c4e323398440e60':
skip = False
if skip:
print 'here', i
continue
if item['_id'] in parsed:
print 'skipping'
continue
print 'now here', str(item['_id'])
file_name = datetime.datetime.fromtimestamp(item['time']).strftime("%m-%d-%y_%H")
door_id = item['door']
file_name = video_link + door_id + '_' + file_name + '.avi'
print i, item['door'], datetime.datetime.fromtimestamp(item['time']).strftime('%Y-%m-%d %H:%M:%S')
print item['_id']
if int(datetime.datetime.fromtimestamp(item['time']).strftime('%H')) > 22:
continue
d = datetime.datetime.fromtimestamp(item['time'])
newdate = d.replace(minute=0, second=0).strftime('%s')
event_time = int(item['time']) - int(newdate) - calibration
if os.path.exists(file_name):
cap = cv2.VideoCapture(file_name)
length = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT))
fps = length / 3600
start = (event_time - 2.5) * fps
end = (event_time + 2.5) * fps
print length, start, end
cap.set(1, start)
photo_id = 1
frames = []
paths = []
for _ in range(int(math.floor(start)), int(math.ceil(end))):
# print 'here',
grabbed, frame = cap.read()
frames.append(frame)
path = face_link + str(item['_id']) + '_' + str(photo_id) + '.png'
paths.append(path)
photo_id += 1
if not grabbed:
print 'not grabbed'
break
try:
pars = zip(frames, paths)
pool.map(getRep, pars)
except Exception as e:
print e
示例4: len
# 需要导入模块: from multiprocessing import Pool [as 别名]
# 或者: from multiprocessing.Pool import daemon [as 别名]
fig.savefig(os.path.join(path_img_out2, img_name), dpi=200, bbox_inches='tight')
plt.close(fig)
print '%s: done' % img_name
return
if __name__=="__main__":
if len(sys.argv) == 2:
layers = [int(sys.argv[1])]
else:
layers = [5,4,3,2,1]
tpl_info = template_info()
p = Pool(8)
p.daemon = True
num_features = 64
features = range(64)
seg_idx = -1
for layer in layers:
for h_key in tpl_info.harmonic_keys:
# multiprocessing doesn't work due to matplotlib/GUI/main_thread/etc..
# args = zip(features, [tpl_info]*num_features, [h_key]*num_features, [layer]*num_features)
# p.map(export_image, args)
for feat in features:
args= (feat, tpl_info, h_key, layer)
export_image(args)