本文整理汇总了Python中mpmath.sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python sqrt函数的具体用法?Python sqrt怎么用?Python sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sqrt函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: getNthOctagonalTriangularNumber
def getNthOctagonalTriangularNumber( n ):
sign = power( -1, real( n ) )
return nint( floor( fdiv( fmul( fsub( 7, fprod( [ 2, sqrt( 6 ), sign ] ) ),
power( fadd( sqrt( 3 ), sqrt( 2 ) ),
fsub( fmul( 4, real_int( n ) ), 2 ) ) ),
96 ) ) )
示例2: zp
def zp(x):
"""
plasma dispersion function
using complementary error function in mpmath library.
"""
return -mp.sqrt(mp.pi) * mp.exp(-x**2) * mp.erfi(x) + mpc(0, 1) * mp.sqrt(mp.pi) * mp.exp(-x**2)
示例3: dfdb
def dfdb (y,x,b,c):
global FT,XO,XT,XF
ft=FT
v=x[0]
i=y[0]
iss=IS=b[0]
n=N=b[1]
ikf=IKF=b[2]
isr=ISR=b[3]
nr=NR=b[4]
vj=VJ=b[5]
m=M=b[6]
rs=RS=b[7]
#ещё раз: ВСЕ константы должны быть в перспективе либо глобальными переменными, как FT, либо составляющими вектора c, но он кривой, потому лучше уж глобальными.
return mpm.matrix ([[iss*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(-mpm.exp((-i*rs + v)/(ft*n)) + XO)*(mpm.exp((-i*rs + v)/(ft*n)) - XO)/(XT*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))) + mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(mpm.exp((-i*rs + v)/(ft*n)) - XO),
iss**XT*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(-i*rs + v)*(mpm.exp((-i*rs + v)/(ft*n)) - XO)*mpm.exp((-i*rs + v)/(ft*n))/(XT*ft*n**XT*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))) - iss*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(-i*rs + v)*mpm.exp((-i*rs + v)/(ft*n))/(ft*n**XT),
iss*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))*(-ikf/(XT*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))**XT) + XO/(XT*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))))*(mpm.exp((-i*rs + v)/(ft*n)) - XO)/ikf,
((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO),
-isr*(-i*rs + v)*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*mpm.exp((-i*rs + v)/(ft*nr))/(ft*nr**XT),
isr*m*(XO - (-i*rs + v)/vj)*(-i*rs + v)*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO)/(vj**XT*((XO - (-i*rs + v)/vj)**XT + XF)),
isr*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO)*mpm.log((XO - (-i*rs + v)/vj)**XT + XF)/XT,
i*iss**XT*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(mpm.exp((-i*rs + v)/(ft*n)) - XO)*mpm.exp((-i*rs + v)/(ft*n))/(XT*ft*n*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))) - i*iss*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*mpm.exp((-i*rs + v)/(ft*n))/(ft*n)+ \
i*isr*m*(XO - (-i*rs + v)/vj)*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO)/(vj*((XO - (-i*rs + v)/vj)**XT + XF)) - i*isr*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*mpm.exp((-i*rs + v)/(ft*nr))/(ft*nr)
]])
示例4: getNthNonagonalOctagonalNumber
def getNthNonagonalOctagonalNumber( n ):
sqrt6 = sqrt( 6 )
sqrt7 = sqrt( 7 )
return nint( floor( fdiv( fmul( fsub( fmul( 11, sqrt7 ), fmul( 9, sqrt6 ) ),
power( fadd( sqrt6, sqrt7 ), fsub( fmul( 8, real_int( n ) ), 5 ) ) ),
672 ) ) )
示例5: BSLaplace
def BSLaplace(S,K,T,t,r,sig,N,phi):
"""Solving the Black Scholes PDE in the Laplace domain"""
x = ln(S/K)
r = mpf(r);sig = mpf(sig);T = mpf(T);t=mpf(t)
S = mpf(S);K = mpf(K);x=mpf(x)
mu = r - 0.5*(sig**2)
tau = T - t
c1 = mpf('0.5017')
c2 = mpf('0.6407')
c3 = mpf('0.6122')
c4 = mpc('0','0.2645')
ans = 0.0
h = 2*pi/N
h = mpf(h)
for k in range(N/2): # Use symmetry
theta = -pi + (k+0.5)*h
z = N/tau*(c1*theta/tan(c2*theta) - c3 + c4*theta)
dz = N/tau*(-c1*c2*theta/(sin(c2*theta)**2) + c1/tan(c2*theta)+c4)
eps1 = (-mu + sqrt(mu**2 + 2*(sig**2)*(z+r)))/(sig**2)
eps2 = (-mu - sqrt(mu**2 + 2*(sig**2)*(z+r)))/(sig**2)
b1 = 1/(eps1-eps2)*(eps2/(z+r) + (1 - eps2)/z)
b2 = 1/(eps1-eps2)*(eps1/(z+r) + (1 - eps1)/z)
ans += exp(z*tau)*bs(x,b1,b2,eps1,eps2,z,r,phi)*dz
val = (K*(h/(2j*pi)*ans)).real
return 2*val
示例6: gamma_shot
def gamma_shot(self, wrel, l, n, t, tc):
"""
Calculate
1, transfer gain
2, electron shot noise
"""
if wrel > 1.0 and wrel < 1.2:
mp.mp.dps = 80
else:
mp.mp.dps = 40
wc = wrel * mp.sqrt(1+n)
za = self.za_l(wc, l, n, t, tc)
mp.mp.dps = 15
zr = self.zr_mp(wc, l, tc)
# below calculating shot noise:
ldc = self.ant_len/l
nc =permittivity * boltzmann * tc/ ldc**2 / echarge**2
vtc = np.sqrt(2 * boltzmann * tc/ emass)
ne = nc * vtc * (1 + n * mp.sqrt(t)) * 2 * np.pi * self.ant_rad * self.ant_len / np.sqrt(4 * np.pi)
###################
## a: coefficient in shot noise. see Issautier et al. 1999
###################
a = 1 + echarge * 3.6 / boltzmann/tc
shot_noise = 2 * a * echarge**2 * mp.fabs(za)**2 * ne
return [mp.fabs((zr+za)/zr)**2, shot_noise]
示例7: resolver_equacao
def resolver_equacao(a, b, c):
u'''
Resolve uma equação do segundo grau.
'''
a, b, c = mpf(a), mpf(b), mpf(c)
d = b ** 2 - 4 * a * c
return ( (-b+sqrt(d))/(2*a), (-b-sqrt(d))/(2*a) )
示例8: __cubic_roots
def __cubic_roots(self,a,c,d):
from mpmath import mpf, mpc, sqrt, cbrt
assert(all([isinstance(_,mpf) for _ in [a,c,d]]))
Delta = -4 * a * c*c*c - 27 * a*a * d*d
self.__Delta = Delta
# NOTE: this was the original function used for root finding.
# proots, err = polyroots([a,0,c,d],error=True,maxsteps=5000000)
# Computation of the cubic roots.
u_list = [mpf(1),mpc(-1,sqrt(3))/2,mpc(-1,-sqrt(3))/2]
Delta0 = -3 * a * c
Delta1 = 27 * a * a * d
# Here we have two choices for the value from sqrt, positive or negative. Since C
# is used as a denominator below, we pick the choice with the greatest absolute value.
# http://en.wikipedia.org/wiki/Cubic_function
# This should handle the case g2 = 0 gracefully.
C1 = cbrt((Delta1 + sqrt(Delta1 * Delta1 - 4 * Delta0 * Delta0 * Delta0)) / 2)
C2 = cbrt((Delta1 - sqrt(Delta1 * Delta1 - 4 * Delta0 * Delta0 * Delta0)) / 2)
if abs(C1) > abs(C2):
C = C1
else:
C = C2
proots = [(-1 / (3 * a)) * (u * C + Delta0 / (u * C)) for u in u_list]
# NOTE: we ignore any residual imaginary part that we know must come from numerical artefacts.
if Delta < 0:
# Sort the roots following the convention: complex with negative imaginary, real, complex with positive imaginary.
# Then assign the roots following the P convention (e2 real root, e1 complex with positive imaginary).
e3,e2,e1 = sorted(proots,key = lambda c: c.imag)
else:
# The convention in this case is to sort in descending order.
e1,e2,e3 = sorted([_.real for _ in proots],reverse = True)
return e1,e2,e3
示例9: fermihalf
def fermihalf(x, sgn):
""" Series approximation to the F_{1/2}(x) or F_{-1/2}(x)
Fermi-Dirac integral """
f = lambda k: mp.sqrt(x ** 2 + np.pi ** 2 * (2 * k - 1) ** 2)
# if x < -100:
# return 0.0
if x < -9 or True:
if sgn > 0:
return mp.exp(x)
else:
return mp.exp(x)
if sgn > 0: # F_{1/2}(x)
a = np.array((1.0 / 770751818298, -1.0 / 3574503105, -13.0 / 184757992,
85.0 / 3603084, 3923.0 / 220484, 74141.0 / 8289, -5990294.0 / 7995))
g = lambda k: mp.sqrt(f(k) - x)
else: # F_{-1/2}(x)
a = np.array((-1.0 / 128458636383, -1.0 / 714900621, -1.0 / 3553038,
27.0 / 381503, 3923.0 / 110242, 8220.0 / 919))
g = lambda k: -0.5 * mp.sqrt(f(k) - x) / f(k)
F = np.polyval(a, x) + 2 * np.sqrt(2 * np.pi) * sum(map(g, range(1, 21)))
return F
示例10: gamma_shot
def gamma_shot(self, wrel, l, n, t, k, tc):
"""
Calculate
1, transfer gain
2, electron shot noise
"""
if wrel > 1.0 and wrel < 1.1:
mp.mp.dps = 40
else:
mp.mp.dps = 20
wc = wrel * mp.sqrt(1+n)
za_val = self.za(wrel, l, n, t, k, tc)
mp.mp.dps = 15
zr_val = self.zr(wc, l, tc)
# below calculating shot noise:
ldc = self.ant_len/l
nc =permittivity * boltzmann * tc/ ldc**2 / echarge**2
vtc = np.sqrt(2 * boltzmann * tc/ emass)
ne = nc * vtc * (1 + n * mp.sqrt(t)) * 2 * np.pi * self.ant_rad * self.ant_len / np.sqrt(4 * np.pi)
###################################
## a: coefficient in shot noise. ##
###################################
scpot= 4
a = 1 + echarge * scpot / boltzmann/tc
shot_noise = 2 * a * echarge**2 * mp.fabs(za_val)**2 * ne
return [mp.fabs((zr_val+za_val)/zr_val)**2, shot_noise]
示例11: find_Y_and_M
def find_Y_and_M(G,R,ndigs=12,Yset=None,Mset=None):
r"""
Compute a good value of M and Y for Maass forms on G
INPUT:
- ''G'' -- group
- ''R'' -- real
- ''ndigs'' -- integer (number of desired digits of precision)
- ''Yset'' -- real (default None) if set we return M corr. to this Y
- ''Mset'' -- integer (default None) if set we return Y corr. to this M
OUTPUT:
- [Y,M] -- good values of Y (real) and M (integer)
EXAMPLES::
TODO:
Better and more effective bound
"""
l=G._level
if(Mset <> None):
# then we get Y corr. to this M
Y0=mpmath.sqrt(3.0)/mpmath.mpf(2*l)
if(Yset==None):
Y0=mpmath.sqrt(3.0)/mpmath.mpf(2*l)
Y=mpmath.mpf(0.95*Y0)
else:
Y=Yset
#print "Y=",Y,"Yset=",Yset
IR=mpmath.mpc(0,R)
eps=mpmath.mpf(10 **-ndigs)
twopiY=mpmath.pi()*Y*mpmath.mpf(2)
M0=get_M_for_maass(R,Y,eps)
if(M0<10):
M0=10
## Do this in low precision
dold=mpmath.mp.dps
#print "Start M=",M0
#print "dold=",dold
#mpmath.mp.dps=100
try:
for n in range(M0,10000 ):
X=mpmath.pi()*Y*mpmath.mpf(2 *n)
#print "X,IR=",X,IR
test=mpmath.fp.besselk(IR,X)
if(abs(test)<eps):
raise StopIteration()
except StopIteration:
M=n
else:
M=n
raise Exception,"Error: Did not get small enough error:=M=%s gave err=%s" % (M,test)
mpmath.mp.dps=dold
return [Y,M]
示例12: __compute_periods
def __compute_periods(self):
# A+S 18.9.
from mpmath import sqrt, ellipk, mpc, pi, mpf
Delta = self.Delta
e1, e2, e3 = self.__roots
if Delta > 0:
m = (e2 - e3) / (e1 - e3)
Km = ellipk(m)
Kpm = ellipk(1 - m)
om = Km / sqrt(e1 - e3)
omp = mpc(0,1) * om * Kpm / Km
elif Delta < 0:
# NOTE: the expression in the sqrt has to be real and positive, as e1 and e3 are
# complex conjugate and e2 is real.
H2 = (sqrt((e2 - e3) * (e2 - e1))).real
assert(H2 > 0)
m = mpf(1) / mpf(2) - 3 * e2 / (4 * H2)
Km = ellipk(m)
Kpm = ellipk(1 - m)
om2 = Km / sqrt(H2)
om2p = mpc(0,1) * Kpm * om2 / Km
om = (om2 - om2p) / 2
omp = (om2 + om2p) / 2
else:
g2, g3 = self.__invariants
if g2 == 0 and g3 == 0:
om = mpf('+inf')
omp = mpc(0,'+inf')
else:
# NOTE: here there is no need for the dichotomy on the sign of g3 because
# we are already working in a regime in which g3 >= 0 by definition.
c = e1 / 2
om = 1 / sqrt(12 * c) * pi()
omp = mpc(0,'+inf')
return 2 * om, 2 * omp
示例13: __compute_roots
def __compute_roots(self,a,c,d):
from mpmath import mpf, mpc, sqrt, cbrt
assert(all([isinstance(_,mpf) for _ in [a,c,d]]))
Delta = self.__Delta
# NOTE: this was the original function used for root finding.
# proots, err = polyroots([a,0,c,d],error=True,maxsteps=5000000)
# Computation of the cubic roots.
# TODO special casing.
u_list = [mpf(1),mpc(-1,sqrt(3))/2,mpc(-1,-sqrt(3))/2]
Delta0 = -3 * a * c
Delta1 = 27 * a * a * d
C1 = cbrt((Delta1 + sqrt(Delta1 * Delta1 - 4 * Delta0 * Delta0 * Delta0)) / 2)
C2 = cbrt((Delta1 - sqrt(Delta1 * Delta1 - 4 * Delta0 * Delta0 * Delta0)) / 2)
if abs(C1) > abs(C2):
C = C1
else:
C = C2
proots = [(-1 / (3 * a)) * (u * C + Delta0 / (u * C)) for u in u_list]
# NOTE: we ignore any residual imaginary part that we know must come from numerical artefacts.
if Delta < 0:
# Sort the roots following the convention: complex with negative imaginary, real, complex with positive imaginary.
# Then assign the roots following the P convention (e2 real root, e1 complex with positive imaginary).
e3,e2,e1 = sorted(proots,key = lambda c: c.imag)
else:
# The convention in this case is to sort in descending order.
e1,e2,e3 = sorted([_.real for _ in proots],reverse = True)
return e1,e2,e3
示例14: P
def P(self,z):
# A+S 18.9.
from mpmath import sqrt, mpc, sin, ellipfun, mpf
Delta = self.Delta
e1, e2, e3 = self.__roots
if self.__ng3:
z = mpc(0,1) * z
if Delta > 0:
zs = sqrt(e1 - e3) * z
m = (e2 - e3) / (e1 - e3)
retval = e3 + (e1 - e3) / ellipfun('sn',u=zs,m=m)**2
elif Delta < 0:
H2 = (sqrt((e2 - e3) * (e2 - e1))).real
assert(H2 > 0)
m = mpf(1) / mpf(2) - 3 * e2 / (4 * H2)
zp = 2 * z * sqrt(H2)
retval = e2 + H2 * (1 + ellipfun('cn',u=zp,m=m)) / (1 - ellipfun('cn',u=zp,m=m))
else:
g2, g3 = self.__invariants
if g2 == 0 and g3 == 0:
retval = 1 / (z**2)
else:
c = e1 / 2
retval = -c + 3 * c / (sin(sqrt(3 * c) * z))**2
if self.__ng3:
return -retval
else:
return retval
示例15: mobility
def mobility(self, z=1000, E=0, T=300, pn=None):
if pn is None:
Eg = self.band_gap(T, symbolic=False, electron_volts=False)
# print Eg, self.__to_numeric(-Eg/(k*T)), mp.exp(self.__to_numeric(-Eg/(k*T)))
pn = self.Nc(T, symbolic=False) * self.Nv(T, symbolic=False) * mp.exp(
self.__to_numeric(-Eg / (k * T))) * 1e-12
# print pn
N = 0
for dopant in self.dopants:
N += dopant.concentration(z)
N *= 1e-6
# print N
mobility = {'mobility_e': {'mu_L': 0, 'mu_I': 0, 'mu_ccs': 0, 'mu_tot': 0},
'mobility_h': {'mu_L': 0, 'mu_I': 0, 'mu_ccs': 0, 'mu_tot': 0}}
for key in mobility.keys():
mu_L = self.reference[key]['mu_L0'] * (T / 300.0) ** (-self.reference[key]['alpha'])
mu_I = (self.reference[key]['A'] * (T ** (3 / 2)) / N) / (
mp.log(1 + self.reference[key]['B'] * (T ** 2) / N) - self.reference[key]['B'] * (T ** 2) / (
self.reference[key]['B'] * (T ** 2) + N))
try:
mu_ccs = (2e17 * (T ** (3 / 2)) / mp.sqrt(pn)) / (mp.log(1 + 8.28e8 * (T ** 2) * (pn ** (-1 / 3))))
X = mp.sqrt(6 * mu_L * (mu_I + mu_ccs) / (mu_I * mu_ccs))
except:
mu_ccs = np.nan
X = 0
# print X
mu_tot = mu_L * (1.025 / (1 + ((X / 1.68) ** (1.43))) - 0.025)
Field_coeff = (1 + (mu_tot * E * 1e-2 / self.reference[key]['v_s']) ** self.reference[key]['beta']) ** (
-1 / self.reference[key]['beta'])
mobility[key]['mu_L'] = mu_L * 1e-4
mobility[key]['mu_I'] = mu_I * 1e-4
mobility[key]['mu_ccs'] = mu_ccs * 1e-4
mobility[key]['mu_tot'] = mu_tot * 1e-4 * Field_coeff
return mobility