本文整理汇总了Python中mpmath.exp函数的典型用法代码示例。如果您正苦于以下问题:Python exp函数的具体用法?Python exp怎么用?Python exp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了exp函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: genenergies
def genenergies(fnR,fnQ,seqsR,seqsQ,gamma,sQ,sR,R0): #Parses seqs and model type then calculates and returns energies R is transcription factor, Q is RNAP
ematR = np.genfromtxt(fnR,skiprows=1)
ematQ = np.genfromtxt(fnQ,skiprows=1)
fR = open(fnR)
fQ = open(fnQ)
mattype = fR.read()[:6] #mattype must be the same
#mattypeQ = fQ.read()[:6]
energies = np.zeros(len(seqsQ))
N = len(seqsQ)
mut_region_lengthQ = len(seqsQ[0])
mut_region_lengthR = len(seqsR[0])
if mattype == '1Point':
for i,s in enumerate(seqsR):
seq_matR = seq2mat(s)
seq_matQ = seq2mat(seqsQ[i])
RNAP = (seq_matQ*ematQ).sum()*sQ
TF = (seq_matR*ematR).sum()*sR + R0
energies[i] = -RNAP + mp.log(1 + mp.exp(-TF - gamma)) - mp.log(1 + mp.exp(-TF))
'''
elif mattype == '2Point':
for i,s in enumerate(seqs):
seq_mat = np.zeros(round(sp.misc.comb(mut_region_length,2))*16)
seq_mat[seq2mat2(s)] = 1
energies[i] = (seq_mat*(emat.ravel())).sum()
elif mattype == '3Point':
for i,s in enumerate(seqs):
seq_mat = np.zeros(round(sp.misc.comb(mut_region_length,3))*64)
seq_mat[seq2mat3(s)] = 1
energies[i] = (seq_mat*(emat.ravel())).sum()
'''
return energies
示例2: mean_from_output
def mean_from_output(output):
"""Given output of the form [params,ll], return mean parameter
vector"""
param_vectors,lls = transpose(output)
z = sum(mpmath.exp(ll) for ll in lls)
return map(sum,transpose([[(mpmath.exp(ll)/z)*p for p in param_vector]
for param_vector,ll in output]))
示例3: integrate
def integrate( self, a, b ):
halfk = self.halfforceconstant
x0 = self.reference
beta = self.beta
avalue = exp( -beta*halfk*(a-x0)**2 )
bvalue = exp( -beta*halfk*(b-x0)**2 )
return 0.5*(b-a)*( avalue + bvalue )
示例4: fermihalf
def fermihalf(x, sgn):
""" Series approximation to the F_{1/2}(x) or F_{-1/2}(x)
Fermi-Dirac integral """
f = lambda k: mp.sqrt(x ** 2 + np.pi ** 2 * (2 * k - 1) ** 2)
# if x < -100:
# return 0.0
if x < -9 or True:
if sgn > 0:
return mp.exp(x)
else:
return mp.exp(x)
if sgn > 0: # F_{1/2}(x)
a = np.array((1.0 / 770751818298, -1.0 / 3574503105, -13.0 / 184757992,
85.0 / 3603084, 3923.0 / 220484, 74141.0 / 8289, -5990294.0 / 7995))
g = lambda k: mp.sqrt(f(k) - x)
else: # F_{-1/2}(x)
a = np.array((-1.0 / 128458636383, -1.0 / 714900621, -1.0 / 3553038,
27.0 / 381503, 3923.0 / 110242, 8220.0 / 919))
g = lambda k: -0.5 * mp.sqrt(f(k) - x) / f(k)
F = np.polyval(a, x) + 2 * np.sqrt(2 * np.pi) * sum(map(g, range(1, 21)))
return F
示例5: dedekind
def dedekind(tau, floatpre):
"""
Algorithm 22 (Dedekind eta)
Input : tau in the upper half-plane, k in N
Output : eta(tau)
"""
a = 2 * mpmath.pi / mpmath.mpf(24)
b = mpmath.exp(mpmath.mpc(0, a))
p = 1
m = 0
while m <= 0.999:
n = nearest_integer(tau.real)
if n != 0:
tau -= n
p *= b ** n
m = tau.real * tau.real + tau.imag * tau.imag
if m <= 0.999:
ro = mpmath.sqrt(mpmath.power(tau, -1) * 1j)
if ro.real < 0:
ro = -ro
p = p * ro
tau = (-p.real + p.imag * 1j) / m
q1 = mpmath.exp(a * tau * 1j)
q = q1 ** 24
s = 1
qs = mpmath.mpc(1, 0)
qn = 1
des = mpmath.mpf(10) ** (-floatpre)
while abs(qs) > des:
t = -q * qn * qn * qs
qn = qn * q
qs = qn * t
s += t + qs
return p * q1 * s
示例6: sigma
def sigma(self,z):
# A+S 18.10.
from mpmath import pi, jtheta, exp, mpc, sqrt, sin
Delta = self.Delta
e1, _, _ = self.__roots
om = self.__periods[0] / 2
omp = self.__periods[1] / 2
if self.__ng3:
z = mpc(0,1) * z
if Delta > 0:
tau = omp / om
q = (exp(mpc(0,1) * pi() * tau)).real
eta = -(pi()**2 * jtheta(n=1,z=0,q=q,derivative=3)) / (12 * om * jtheta(n=1,z=0,q=q,derivative=1))
v = (pi() * z) / (2 * om)
retval = (2 * om) / pi() * exp((eta * z**2)/(2 * om)) * jtheta(n=1,z=v,q=q)/jtheta(n=1,z=0,q=q,derivative=1)
elif Delta < 0:
om2 = om + omp
om2p = omp - om
tau2 = om2p / (2 * om2)
q = mpc(0,(mpc(0,1) * exp(mpc(0,1) * pi() * tau2)).imag)
eta2 = -(pi()**2 * jtheta(n=1,z=0,q=q,derivative=3)) / (12 * om2 * jtheta(n=1,z=0,q=q,derivative=1))
v = (pi() * z) / (2 * om2)
retval = (2 * om2) / pi() * exp((eta2 * z**2)/(2 * om2)) * jtheta(n=1,z=v,q=q)/jtheta(n=1,z=0,q=q,derivative=1)
else:
g2, g3 = self.__invariants
if g2 == 0 and g3 == 0:
retval = z
else:
c = e1 / 2
A = sqrt(3 * c)
retval = (1 / A) * sin(A*z) * exp((c*z**2) / 2)
if self.__ng3:
return mpc(0,-1) * retval
else:
return retval
示例7: test_stoch_eig_high_prec
def test_stoch_eig_high_prec():
n = 1e-100
with mp.workdps(100):
P = mp.matrix([[1-3*(mp.exp(n)-1), 3*(mp.exp(n)-1)],
[mp.exp(n)-1 , 1-(mp.exp(n)-1)]])
run_stoch_eig(P, verbose=VERBOSE)
示例8: test_gth_solve_high_prec
def test_gth_solve_high_prec():
n = 1e-100
with mp.workdps(100):
P = mp.matrix([[-3*(mp.exp(n)-1), 3*(mp.exp(n)-1)],
[mp.exp(n)-1 , -(mp.exp(n)-1) ]])
run_gth_solve(P, verbose=VERBOSE)
示例9: dfdy
def dfdy (y,x,b,c):
global FT,XO,XT,XF
ft=FT
v=x[0]
i=y[0]
iss=IS=b[0]
n=N=b[1]
ikf=IKF=b[2]
isr=ISR=b[3]
nr=NR=b[4]
vj=VJ=b[5]
m=M=b[6]
rs=RS=b[7]
#fh = iss**mpm.mpf(2)*rs*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - mpm.mpf(1))))*(mpm.exp((-i*rs + v)/(ft*n)) - mpm.mpf(1))*mpm.exp((-i*rs + v)/(ft*n))/(mpm.mpf(2)*ft*n*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - mpm.mpf(1)))) - iss*rs*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - mpm.mpf(1))))*mpm.exp((-i*rs + v)/(ft*n))/(ft*n)
#sh = isr*m*rs*(mpm.mpf(1) - (-i*rs + v)/vj)*((mpm.mpf(1) - (-i*rs + v)/vj)**mpm.mpf(2) + mpm.mpf('0.005'))**(m/mpm.mpf(2))*(mpm.exp((-i*rs + v)/(ft*nr)) - mpm.mpf(1))/(vj*((mpm.mpf(1) - (-i*rs + v)/vj)**mpm.mpf(2) + mpm.mpf('0.005'))) - isr*rs*((mpm.mpf(1) - (-i*rs + v)/vj)**mpm.mpf(2) + mpm.mpf('0.005'))**(m/mpm.mpf(2))*mpm.exp((-i*rs + v)/(ft*nr))/(ft*nr)
fh = iss**XT*rs*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(mpm.exp((-i*rs + v)/(ft*n)) - XO)*mpm.exp((-i*rs + v)/(ft*n))/(XT*ft*n*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))) - iss*rs*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*mpm.exp((-i*rs + v)/(ft*n))/(ft*n)
sh = isr*m*rs*(XO - (-i*rs + v)/vj)*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO)/(vj*((XO - (-i*rs + v)/vj)**XT + XF)) - isr*rs*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*mpm.exp((-i*rs + v)/(ft*nr))/(ft*nr)
return mpm.matrix ([[fh+sh]])
示例10: bimax_integrand
def bimax_integrand(self, z, wc, l, n, t):
"""
Integrand of electron-noise integral.
"""
return f1(wc*l/z/mp.sqrt(2)) * z * \
(mp.exp(-z**2) + n/mp.sqrt(t)*mp.exp(-z**2 / t)) / \
(mp.fabs(BiMax.d_l(z, wc, n, t))**2 * wc**2)
示例11: temp_t
def temp_t(t, x=mpf(1), Q=mpf(1), A=mpf(1), Ti=mpf(10)):
u'''
Definição da derivada da temperatura em relação ao tempo, temp_t = T_t(t, x)
'''
t = mpf(t)
termo1 = sqrt(A/(t*pi)) * exp(-x**2/(t*4*A))
termo2 = sqrt(A/(t*pi)) * (x**2/(t**2 * 2 * A)) * exp(-x**2/(t*4*A))
termo3 = (x**2/(sqrt(t**3 * A) * 4)) * erfc_z(x / (mpf(2) * sqrt(t * A)))
return Q * (termo1 + termo2 + termo3)
示例12: fl2
def fl2(x0, seta2, seff2):
coeff = 1./np.sqrt(np.pi)
xm = x0/np.sqrt(2.*seta2)
tau = lamda1*seff2/np.sqrt(2.*seta2)
intgr1 = -coeff*(tau-xm)*exp(-(tau-xm)**2) +(.5+(tau-xm)**2)*erfc(tau-xm)
intgr2 = -coeff*(tau+xm)*exp(-(tau+xm)**2) +(.5+(tau+xm)**2)*erfc(tau+xm)
return (seta2/(1.+lamda2*seff2)**2)*(intgr1+intgr2)
示例13: sph_i2n_exact
def sph_i2n_exact(n, z):
"""Return the value of i^{(2)}_n computed using the exact formula.
The expression used is http://dlmf.nist.gov/10.49.E10 .
"""
zm = mpmathify(z)
s1 = sum(mpc(-1,0)**k * _a(k, n)/zm**(k+1) for k in xrange(n+1))
s2 = sum(_a(k, n)/zm**(k+1) for k in xrange(n+1))
return exp(zm)/2 * s1 + mpc(-1,0)**n*exp(-zm)/2 * s2
示例14: DedekindEtaA4
def DedekindEtaA4(tau):
''' Compute the derivative of the Dedekind Eta function for imaginary argument tau.
Numerically. '''
try:
import mpmath as mp
mpmath_loaded = True
except ImportError:
mpmath_loaded = False
return mp.cbrt(0.5*mp.jtheta(2,0,mp.exp(-mp.pi*tau))*mp.jtheta(3,0,mp.exp(-mp.pi*tau))*mp.jtheta(4,0,mp.exp(-mp.pi*tau)))
示例15: DedekindEtaA2
def DedekindEtaA2(tau):
''' Compute the derivative of the Dedekind Eta function for imaginary argument tau.
Numerically. '''
try:
import mpmath as mp
mpmath_loaded = True
except ImportError:
mpmath_loaded = False
return mp.exp(-mp.pi/12.0)*mp.jtheta(3,mp.pi*(mp.j*tau+1.0)/2.0,mp.exp(-3.0*mp.pi))