本文整理汇总了Python中mpld3.plugins.connect函数的典型用法代码示例。如果您正苦于以下问题:Python connect函数的具体用法?Python connect怎么用?Python connect使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了connect函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
fig, ax = plt.subplots()
points = ax.plot(range(10), 'o', ms=20)
plugins.connect(fig, plugins.PointLabelTooltip(points[0],
location="top left"))
return fig
示例2: main
def main():
fig, ax = plt.subplots()
line, = ax.plot([0, 1, 3, 8, 5], '-', lw=5)
plugins.connect(fig, plugins.LineLabelTooltip(line, 'Line A'))
ax.set_title('Line with Tooltip')
return fig
示例3: main
def main():
fig, ax = plt.subplots(2)
# scatter periods and amplitudes
np.random.seed(0)
P = 0.2 + np.random.random(size=20)
A = np.random.random(size=20)
x = np.linspace(0, 10, 100)
data = np.array([[x, Ai * np.sin(x / Pi)]
for (Ai, Pi) in zip(A, P)])
points = ax[1].scatter(P, A, c=P + A,
s=200, alpha=0.5)
ax[1].set_xlabel('Period')
ax[1].set_ylabel('Amplitude')
# create the line object
lines = ax[0].plot(x, 0 * x, '-w', lw=3, alpha=0.5)
ax[0].set_ylim(-1, 1)
ax[0].set_title("Hover over points to see lines")
# transpose line data and add plugin
linedata = data.transpose(0, 2, 1).tolist()
plugins.connect(fig, LinkedView(points, lines[0], linedata))
return fig
示例4: plot_snr_cmd
def plot_snr_cmd(self, snr, ax, color='bv', mag='v', add_candidates=True):
cmd_search = self.session.query(malchemy.MCPS).\
join(malchemy.SNRNeighbour).join(malchemy.SNRS).\
filter(malchemy.SNRS.id==snr.snr.id)
cmd_data = [(item.__getattribute__(color[0]) -
item.__getattribute__(color[1]),
item.__getattribute__(mag)) for item in cmd_search]
data = np.array(cmd_data)
H, xedges, yedges = np.histogram2d(data[:,1], data[:,0], bins=100,
range=[[16,22],[-1,2]])
extent = [yedges[0], yedges[-1], xedges[-1], xedges[0]]
ax.imshow(H, extent=extent, interpolation='nearest',
cmap=cm.gray_r,
aspect='auto')
ax.set_xlabel('Color {0} - {1}'.format(*list(color)))
ax.set_ylabel('mag {0}'.format(mag))
if add_candidates:
candidate_coord = [(item.mcps.__getattribute__(color[0]) -
item.mcps.__getattribute__(color[1]),
item.mcps.__getattribute__(mag)) for item in snr.candidates]
candidate_coord = np.array(candidate_coord)
cand_plot = ax.plot(candidate_coord[:,0], candidate_coord[:,1], 'bo')
cand_labels = [str(item) for item in snr.candidates]
tooltip = plugins.PointHTMLTooltip(cand_plot[0], cand_labels,
voffset=10, hoffset=10)
plugins.connect(ax.figure, tooltip)
return cand_plot
示例5: plot_xy_bootstrapped
def plot_xy_bootstrapped(xs, ys, thresholds, xlabel, ylabel, labels=False, labels_left=False, ax=None, fig=None, label=None, **plot_kwargs):
if ax is None or fig is None:
fig1, ax1 = plt.subplots()
if fig is None:
fig = fig1
if ax is None:
ax = ax1
for i in range(1, len(xs)):
ax.plot(xs[i], ys[i], '-', alpha=0.3)
(xs_, ys_, thresholds_) = make_points_far(xs[0], ys[0], thresholds)
label_text = ["Threshold: %s (%s, %s)" % (t, pretty_point(x), pretty_point(y)) for (x, y, t) in zip(xs_, ys_, thresholds_)]
if label is None:
scatter = ax.plot(xs_, ys_, '-o', **plot_kwargs)
plugins.connect(fig, plugins.PointHTMLTooltip(scatter[0], label_text))
else:
scatter = ax.plot(xs_, ys_, '-o', label=label, **plot_kwargs)
plugins.connect(fig, plugins.PointHTMLTooltip(scatter[0], label_text))
if labels:
draw_labels(ax, xs_, ys_, thresholds_, labels_left=labels_left)
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.tight_layout()
if label is not None:
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles[::-1], labels[::-1], loc='best')
return save_image()
示例6: generate_embedding
def generate_embedding(param_file, model_file, mnist_file, output_file=None,
param_key=None):
predictor = optimus.load(model_file)
params = biggie.Stash(param_file)
param_key = sorted(params.keys())[-1] if param_key is None else param_key
predictor.param_values = params.get(param_key)
train, valid, test = datatools.load_mnist_npz(mnist_file)
idx = np.random.permutation(len(valid[0]))[:2000]
x_in = valid[0][idx]
y_true = valid[1][idx]
z_out = predictor(x_in=x_in)['z_out']
imgfiles = [datatools.generate_imagename(i, y)
for i, y in enumerate(idx, y_true)]
labels = ['<img src="{}{}" width=100 height=100>'.format(URL_BASE, img)
for img in imgfiles]
palette = seaborn.color_palette("Set3", 10)
colors = np.asarray([palette[y] for y in y_true])
fig = plt.figure(figsize=(10, 10))
ax = fig.gca()
handle = ax.scatter(z_out.T[0], z_out.T[1],
c=colors, s=75, alpha=0.66)
tooltip = plugins.PointHTMLTooltip(
handle, labels,
voffset=10, hoffset=10)
plugins.connect(fig, tooltip)
plt.show()
if output_file:
with open(output_file, 'w') as fp:
mpld3.save_html(fig, fp)
示例7: create_plot
def create_plot():
fig, ax = plt.subplots()
line, = ax.plot([0, 1, 3, 8, 5], '-', lw=5)
label = '<h1>Line {}</h1>'.format('A')
plugins.connect(fig, plugins.LineHTMLTooltip(line, label))
ax.set_title('Line with HTML Tooltip')
return fig
示例8: doRender
def doRender(self, handlerId):
if self.canRenderChart(handlerId) == False:
self._addHTML("Unable to find a numerical column in the dataframe")
return
mpld3.enable_notebook()
fig, ax = plt.subplots()
keyFields = self.getKeyFields(handlerId)
keyFieldValues = self.getKeyFieldValues(handlerId, keyFields)
keyFieldLabels = self.getKeyFieldLabels(handlerId, keyFields)
valueFields = self.getValueFields(handlerId)
valueFieldValues = self.getValueFieldValueLists(handlerId, keyFields, valueFields)
context = self.getMpld3Context(handlerId)
options = {"fieldNames":self.getFieldNames(),"aggregationSupported":self.supportsAggregation(handlerId),"aggregationOptions":["SUM","AVG","MIN","MAX","COUNT"]}
if (context is not None):
options.update(context[1])
dialogBody = self.renderTemplate(context[0], **options)
else:
dialogBody = self.renderTemplate("baseChartOptionsDialogBody.html", **options)
plugins.connect(fig, ChartPlugin(self, keyFieldLabels))
plugins.connect(fig, DialogPlugin(self, handlerId, dialogBody))
self.doRenderMpld3(handlerId, fig, ax, keyFields, keyFieldValues, keyFieldLabels, valueFields, valueFieldValues)
self.setChartSize(handlerId, fig, ax)
self.setChartGrid(handlerId, fig, ax)
self.setChartLegend(handlerId, fig, ax)
示例9: plot
def plot(self, notebook=False, colormap='polar', scale=1, maptype='points', show=True, savename=None):
# make a spatial map based on the scores
fig = pyplot.figure(figsize=(12, 5))
ax1 = pyplot.subplot2grid((2, 3), (0, 1), colspan=2, rowspan=2)
if maptype is 'points':
ax1, h1 = pointmap(self.scores, colormap=colormap, scale=scale, ax=ax1)
elif maptype is 'image':
ax1, h1 = imagemap(self.scores, colormap=colormap, scale=scale, ax=ax1)
fig.add_axes(ax1)
# make a scatter plot of sampled scores
ax2 = pyplot.subplot2grid((2, 3), (1, 0))
ax2, h2, samples = scatter(self.scores, colormap=colormap, scale=scale, thresh=0.01, nsamples=1000, ax=ax2, store=True)
fig.add_axes(ax2)
# make the line plot of reconstructions from principal components for the same samples
ax3 = pyplot.subplot2grid((2, 3), (0, 0))
ax3, h3, linedata = tsrecon(self.comps, samples, ax=ax3)
plugins.connect(fig, LinkedView(h2, h3[0], linedata))
plugins.connect(fig, HiddenAxes())
if show and notebook is False:
mpld3.show()
if savename is not None:
mpld3.save_html(fig, savename)
elif show is False:
return mpld3.fig_to_html(fig)
示例10: main
def main():
fig, ax = plt.subplots()
N = 50
df = pd.DataFrame(index=range(N))
df['x'] = np.random.randn(N)
df['y'] = np.random.randn(N)
df['z'] = np.random.randn(N)
labels = []
for i in range(N):
label = df.ix[[i], :].T
label.columns = ['Row {0}'.format(i)]
labels.append(str(label.to_html())) # .to_html() is unicode, so make leading 'u' go away with str()
points = ax.plot(df.x, df.y, 'o', color='k', mec='w', ms=15, mew=1, alpha=.9)
ax.set_xlabel('x')
ax.set_ylabel('y')
tooltip = plugins.PointHTMLTooltip(
points[0], labels, voffset=10, hoffset=10, css=css)
plugins.connect(fig, tooltip)
return fig
示例11: plot
def plot(self, data, notebook=False, show=True, savename=None):
fig = pyplot.figure()
ncenters = len(self.centers)
colorizer = Colorize()
colorizer.get = lambda x: self.colors[int(self.predict(x)[0])]
# plot time series of each center
# TODO move into a time series plotting function in viz.plots
for i, center in enumerate(self.centers):
ax = pyplot.subplot2grid((ncenters, 3), (i, 0))
ax.plot(center, color=self.colors[i], linewidth=5)
fig.add_axes(ax)
# make a scatter plot of the data
ax2 = pyplot.subplot2grid((ncenters, 3), (0, 1), rowspan=ncenters, colspan=2)
ax2, h2 = scatter(data, colormap=colorizer, ax=ax2)
fig.add_axes(ax2)
plugins.connect(fig, HiddenAxes())
if show and notebook is False:
mpld3.show()
if savename is not None:
mpld3.save_html(fig, savename)
elif show is False:
return mpld3.fig_to_html(fig)
示例12: __call__
def __call__(self, plot, view):
if not self._applies(plot, view): return
fig = plot.handles['fig']
if 'legend' in plot.handles:
plot.handles['legend'].set_visible(False)
line_segments, labels = [], []
keys = view.keys()
for idx, subplot in enumerate(plot.subplots.values()):
if isinstance(subplot, PointPlot):
line_segments.append(subplot.handles['paths'])
if isinstance(view, NdOverlay):
labels.append(str(keys[idx]))
else:
labels.append(subplot.map.last.label)
elif isinstance(subplot, CurvePlot):
line_segments.append(subplot.handles['line_segment'])
if isinstance(view, NdOverlay):
labels.append(str(keys[idx]))
else:
labels.append(subplot.map.last.label)
tooltip = plugins.InteractiveLegendPlugin(line_segments, labels,
alpha_sel=self.alpha_sel,
alpha_unsel=self.alpha_unsel)
plugins.connect(fig, tooltip)
示例13: create_plot
def create_plot():
fig, ax = plt.subplots()
points = ax.scatter(np.random.rand(50), np.random.rand(50),
s=500, alpha=0.3)
plugins.clear(fig)
plugins.connect(fig, plugins.Reset(), plugins.Zoom(), ClickInfo(points))
return fig
示例14: after
def after(self):
if self.draw:
plugins.connect(
self.fig, plugins.InteractiveLegendPlugin(
self.s1, self.labels, ax=self.ax))
mpld3.show()
else:
pass
示例15: after
def after(self):
if self.draw:
plugins.connect(
self.fig, plugins.InteractiveLegendPlugin(
self.s1, self.labels, ax=self.ax))
mpld3.display()
else:
print meeting.minutes