本文整理汇总了Python中mpld3.save_html函数的典型用法代码示例。如果您正苦于以下问题:Python save_html函数的具体用法?Python save_html怎么用?Python save_html使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了save_html函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot
def plot(self, notebook=False, colormap='polar', scale=1, maptype='points', show=True, savename=None):
# make a spatial map based on the scores
fig = pyplot.figure(figsize=(12, 5))
ax1 = pyplot.subplot2grid((2, 3), (0, 1), colspan=2, rowspan=2)
if maptype is 'points':
ax1, h1 = pointmap(self.scores, colormap=colormap, scale=scale, ax=ax1)
elif maptype is 'image':
ax1, h1 = imagemap(self.scores, colormap=colormap, scale=scale, ax=ax1)
fig.add_axes(ax1)
# make a scatter plot of sampled scores
ax2 = pyplot.subplot2grid((2, 3), (1, 0))
ax2, h2, samples = scatter(self.scores, colormap=colormap, scale=scale, thresh=0.01, nsamples=1000, ax=ax2, store=True)
fig.add_axes(ax2)
# make the line plot of reconstructions from principal components for the same samples
ax3 = pyplot.subplot2grid((2, 3), (0, 0))
ax3, h3, linedata = tsrecon(self.comps, samples, ax=ax3)
plugins.connect(fig, LinkedView(h2, h3[0], linedata))
plugins.connect(fig, HiddenAxes())
if show and notebook is False:
mpld3.show()
if savename is not None:
mpld3.save_html(fig, savename)
elif show is False:
return mpld3.fig_to_html(fig)
示例2: generate_embedding
def generate_embedding(param_file, model_file, mnist_file, output_file=None,
param_key=None):
predictor = optimus.load(model_file)
params = biggie.Stash(param_file)
param_key = sorted(params.keys())[-1] if param_key is None else param_key
predictor.param_values = params.get(param_key)
train, valid, test = datatools.load_mnist_npz(mnist_file)
idx = np.random.permutation(len(valid[0]))[:2000]
x_in = valid[0][idx]
y_true = valid[1][idx]
z_out = predictor(x_in=x_in)['z_out']
imgfiles = [datatools.generate_imagename(i, y)
for i, y in enumerate(idx, y_true)]
labels = ['<img src="{}{}" width=100 height=100>'.format(URL_BASE, img)
for img in imgfiles]
palette = seaborn.color_palette("Set3", 10)
colors = np.asarray([palette[y] for y in y_true])
fig = plt.figure(figsize=(10, 10))
ax = fig.gca()
handle = ax.scatter(z_out.T[0], z_out.T[1],
c=colors, s=75, alpha=0.66)
tooltip = plugins.PointHTMLTooltip(
handle, labels,
voffset=10, hoffset=10)
plugins.connect(fig, tooltip)
plt.show()
if output_file:
with open(output_file, 'w') as fp:
mpld3.save_html(fig, fp)
示例3: plot
def plot(self, data, notebook=False, show=True, savename=None):
fig = pyplot.figure()
ncenters = len(self.centers)
colorizer = Colorize()
colorizer.get = lambda x: self.colors[int(self.predict(x)[0])]
# plot time series of each center
# TODO move into a time series plotting function in viz.plots
for i, center in enumerate(self.centers):
ax = pyplot.subplot2grid((ncenters, 3), (i, 0))
ax.plot(center, color=self.colors[i], linewidth=5)
fig.add_axes(ax)
# make a scatter plot of the data
ax2 = pyplot.subplot2grid((ncenters, 3), (0, 1), rowspan=ncenters, colspan=2)
ax2, h2 = scatter(data, colormap=colorizer, ax=ax2)
fig.add_axes(ax2)
plugins.connect(fig, HiddenAxes())
if show and notebook is False:
mpld3.show()
if savename is not None:
mpld3.save_html(fig, savename)
elif show is False:
return mpld3.fig_to_html(fig)
示例4: export_fmt
def export_fmt(self, filename, size, sizeofsizes, format):
if sizeofsizes == 1:
size = 'none'
if format is 'png':
add = '.png'
elif format is 'pgf':
add = '.pgf'
elif format is 'pdf':
add = '.pdf'
elif format is 'html':
add = '.html'
elif format is 'svg':
# save as pdf, then pdf2svg
self.fig.savefig(filename + self.sizestring[size] + '.pdf',
bbox_extra_artists=self.artists, bbox_inches='tight',
transparent=True)
os.system('pdf2svg ' + filename + self.sizestring[size] + '.pdf ' +
filename + self.sizestring[size] + '.svg')
os.remove(filename + self.sizestring[size] + '.pdf')
elif format is 'websvg':
add = 'web.svg'
if (format is not 'svg') and (format is not 'html'):
self.fig.savefig(filename + self.sizestring[size] + add,
bbox_extra_artists=self.artists, bbox_inches='tight',
transparent=True)
if format is 'html':
add = '.html'
mpld3.save_html(self.fig, filename + add)
self.add_math_jax(filename + add)
if format is 'pgf':
self.remove_font_sizes(filename + self.sizestring[size] + add)
示例5: main
def main(args):
# Import data
logger.info(u'Importing data with following parameters: \n\tWide: {0}\n\tDesign: {1}\n\tUnique ID: {2}\n\tGroup Column: {3}'.format(args.fname, args.dname, args.uniqID, args.group))
dat = wideToDesign(args.fname, args.dname, args.uniqID, args.group)
dat.wide.convert_objects(convert_numeric=True)
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(20, 20))
plt.subplots_adjust(hspace=0.3)
# If there is group information, color by group.
if hasattr(dat, 'group'):
logger.info('Plotting sample distributions by group')
legend1 = pltByTrt(dat, ax1)
else:
logger.info('Plotting sample distributions')
pltBySample(dat, ax1)
# Create Legend
handles, labels = ax1.get_legend_handles_labels()
ax1.legend(handles, labels, ncol=5, loc='upper right', fontsize=10)
# Create second legend if there is group information
if hasattr(dat, 'group'):
ax1.add_artist(legend1)
# Plot boxplot of samples
pltBoxplot(dat, ax2)
plt.savefig(args.ofig, format='pdf')
mpld3.save_html(fig, args.ofig2, template_type='simple')
示例6: graphme
def graphme(self, pngfilename="my_sample_png.png"):
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import mpld3
import datetime
""" creating background info"""
# create a plot with as may subplots as you choose
fig, ax = plt.subplots()
# add a grid to the background
ax.grid(True, alpha = 0.2)
# the x axis contains date
fig.autofmt_xdate()
# the dates are year, month
ax.fmt_xdata = mdates.DateFormatter('%Y-%m')
if self.table not in ['MS04314', 'MS00114', 'MS04334','MS04315','MS00115']:
final_glitch = self.decide()
dates = sorted(final_glitch.keys())
dates2 = [x for x in dates if final_glitch[x]['mean'] != None and final_glitch[x]['mean'] != "None"]
vals = [final_glitch[x]['mean'] for x in dates2]
glitched_values = ax.plot(dates2, vals, 'b-')
ax.legend(loc=4)
ax.set_xlabel("dates")
ax.set_ylabel("values")
mpld3.show()
mpld3.save_html(fig, 'my_output_html.html')
import pylab
pylab.savefig(pngfilename)
示例7: test_interactive_shallowPP
def test_interactive_shallowPP(save_to_html=False):
# Define left and right state (h,hu)
ql = np.array([3.0, 5.0])
qr = np.array([3.0, -5.0])
# Define optional parameters (otherwise chooses default values)
plotopts = {'g':1.0, 'time':2.0, 'tmax':5, 'hmax':10, 'humin':-15, 'humax':15}
# Call interactive function (can be called without any argument)
pt = shallow_water(ql,qr,**plotopts)
if save_to_html:
mpld3.save_html(pt, "test_shallow.html")
mpld3.show()
示例8: plot_param
def plot_param(df, path, param, units):
fig, ax = plt.subplots(figsize=(8,6))
df[param].plot(marker='o', ax=ax, legend=None)
try:
plt.ylabel(units[df.columns.get_loc(param)], labelpad=10)
except:
pass
plt.xlabel('')
plt.title(param + ' (time in UTC)')
mpld3.save_html(fig, '{o}{p}.html'.format(o=path, p=param))
plt.close(fig)
示例9: pcoa_plot_interactive
def pcoa_plot_interactive(profile, output_dir, dist_type):
"""Generate interactive PCoA plot.
Args:
profile (metagenomic_profile): Profile instance containing data.
output_dir (str): path to directory to save output
dist_type (str): distance metric to use in PCoA.
Returns:
Path to output file.
"""
try:
import mpld3 # Provides interactive graphs
import plugins # Custom mpld3 plugins
except ImportError:
print("Could not import mpld3. Please install mpld3 or set 'interactive_plots' option to 'false.'")
return
__check_input(output_dir)
df = __partition_abundance_data(profile)
eig_pairs = __get_eig_pairs(df, dist_type)
eig_pairs.sort()
eig_pairs.reverse()
PCo1 = eig_pairs[0][1]
PCo2 = eig_pairs[1][1]
# Begin plotting
# Clear any current figures from the plot
plt.clf()
lgd_labels = __plot_markers_interactive(profile, PCo1, PCo2, a=0.7) # Main plotting
# Padding for x and y labels
ax = plt.gca()
ax.tick_params(axis='both', which='major', pad=15)
plt.xlabel("PCo1", fontsize=16)
plt.ylabel("PCo2", fontsize=16)
fname = output_dir + "/" + "pcoa_" + dist_type + ".html"
fig = plt.gcf()
mpld3.plugins.connect(fig, plugins.TweakToolbar())
mpld3.save_html(fig, fname)
# Create legend
lgd_fname = __create_legend(lgd_labels, output_dir)
return fname, lgd_fname
示例10: plot_observed_aimpoints
def plot_observed_aimpoints(obs_aimpoints):
"""
Make png and html (mpld3) plot of data in the ``obs_aimpoints`` table.
"""
plt.close(1)
fig = plt.figure(1, figsize=(8, 4))
dates = DateTime(obs_aimpoints['mean_date'])
years = dates.frac_year
times = dates.secs
ok = years > np.max(years) - float(opt.lookback) / 365.25
obs_aimpoints = obs_aimpoints[ok]
times = times[ok]
lolims = {}
uplims = {}
for axis in ('dx', 'dy'):
lolims[axis] = obs_aimpoints[axis] > 10
uplims[axis] = obs_aimpoints[axis] < -10
obs_aimpoints[axis] = obs_aimpoints[axis].clip(-10, 10)
ok = ((np.abs(obs_aimpoints['target_offset_y']) < 100) &
(np.abs(obs_aimpoints['target_offset_z']) < 100))
plot_cxctime(times[ok], obs_aimpoints['dx'][ok], 'ob', label='CHIPX')
plot_cxctime(times[ok], obs_aimpoints['dy'][ok], 'or', label='CHIPY')
plot_cxctime(times[~ok], obs_aimpoints['dx'][~ok], '*b', label='CHIPX (offset > 100")')
plot_cxctime(times[~ok], obs_aimpoints['dy'][~ok], '*r', label='CHIPY (offset > 100")')
for axis in ('dx', 'dy'):
if np.any(lolims[axis]):
plt.errorbar(DateTime(times[lolims[axis]]).plotdate,
obs_aimpoints[axis][lolims[axis]], marker='.', yerr=1.5, lolims=True)
if np.any(uplims[axis]):
plt.errorbar(DateTime(times[uplims[axis]]).plotdate,
obs_aimpoints[axis][uplims[axis]], marker='.', yerr=1.5, uplims=True)
plt.grid()
ymax = max(12, np.max(np.abs(obs_aimpoints['dx'])), np.max(np.abs(obs_aimpoints['dy'])))
plt.ylim(-ymax, ymax)
plt.ylabel('Offset (arcsec)')
plt.title('Observed aimpoint offsets')
plt.legend(loc='upper left', fontsize='small', title='', framealpha=0.5)
outroot = os.path.join(opt.data_root, 'observed_aimpoints')
logger.info('Writing plot files {}.png,html'.format(outroot))
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fmt='.1f'))
mpld3.save_html(fig, outroot + '.html')
fig.patch.set_visible(False)
plt.savefig(outroot + '.png', frameon=False)
示例11: plot_housing_temperature
def plot_housing_temperature():
dat = fetch.Msid('aach1t', '2000:001', stat='daily')
plt.close(1)
fig = plt.figure(figsize=(8, 4))
year = Time(dat.times, format='cxcsec').decimalyear
plt.plot(year, dat.vals)
plt.grid()
plt.xlabel('Year')
plt.ylabel('Temperature (degF)')
plt.title('Aspect Camera housing temperature trend')
outroot = os.path.join(opt.data_root, 'aca_housing_temperature')
logger.info('Writing plot files {}.png,html'.format(outroot))
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fmt='.1f'))
mpld3.save_html(fig, outroot + '.html')
fig.patch.set_visible(False)
plt.savefig(outroot + '.png', frameon=False)
示例12: test_interactive_linearPP
def test_interactive_linearPP(save_to_html=False):
## Define left and right state
ql = np.array([-2.0, 2.0])
qr = np.array([0.0, -3.0])
# Define two eigenvectors and eigenvalues (acoustics)
zz = 2.0
rho0 = 1.0
r1 = np.array([zz,1.0])
r2 = np.array([-zz,1.0])
lam1 = zz/rho0
lam2 = -zz/rho0
plotopts={'q1min':-5, 'q1max':5, 'q2min':-5, 'q2max':5, 'domain':5, 'time':1,
'title1':"Pressure", 'title2':"Velocity"}
pt = linear_phase_plane(ql,qr,r1,r2,lam1,lam2,**plotopts)
if save_to_html:
mpld3.save_html(pt, "test_linearPP.html")
mpld3.show()
示例13: show_mpld3
def show_mpld3(self,fig,ax,points,xl_list,xl_labels):
import mpld3
from mpld3 import plugins
import pandas as pd
# Define some CSS to control our custom labels
css = """
table
{
border-collapse: collapse;
}
th
{
color: #000000;
background-color: #ffffff;
}
td
{
background-color: #cccccc;
}
table, th, td
{
font-family:Arial, Helvetica, sans-serif;
border: 1px solid black;
text-align: right;
font-size: 10px;
}
"""
df = pd.DataFrame(index=xl_labels)
sorted_keys=sorted(xl_list[0].keys())
for k in sorted_keys:
df[k] = np.array([xl[k] for xl in xl_list])
labels = []
for i in range(len(xl_labels)):
label = df.ix[[i], :].T
# .to_html() is unicode; so make leading 'u' go away with str()
labels.append(str(label.to_html()))
tooltip = plugins.PointHTMLTooltip(points, labels,
voffset=10, hoffset=10, css=css)
plugins.connect(fig, tooltip)
mpld3.save_html(fig,"output.html")
示例14: downloadVideoAndEntropy
def downloadVideoAndEntropy(f, frame):
fhandle = open(f, 'ab')
ftp.retrbinary('RETR ' + f, fhandle.write)
cap = cv2.VideoCapture(f)
if cap.isOpened():
cap.set(1, frame)
ret, newframe = cap.read()
if ret:
newname = f.split(".")[0]
finalname = newname + '_frame_' + str(frame) + '.png'
cv2.imwrite(finalname, newframe)
colorIm = Image.open(finalname)
greyIm = colorIm.convert('L')
colorIm = np.array(colorIm)
greyIm = np.array(greyIm)
N = 5
S = greyIm.shape
E = np.array(greyIm)
for row in range(S[0]):
for col in range(S[1]):
Lx = np.max([0, col - N])
Ux = np.min([S[1], col + N])
Ly = np.max([0, row - N])
Uy = np.min([S[0], row + N])
region = greyIm[Ly:Uy, Lx:Ux].flatten()
E[row, col] = entropy(region)
grayImage = cv2.applyColorMap(greyIm, cv2.COLOR_BGR2GRAY)
entropyImage = cv2.applyColorMap(greyIm, cv2.COLORMAP_JET)
cv2.imwrite('gray_' + finalname, greyIm)
# cv2.imwrite('color_' + finalname, entropyImage)
a = np.empty_like(E)
a[:, :] = E
a = np.flipud(a)
fig = plt.figure()
plt.imshow(a, cmap=plt.get_cmap("jet"), origin="lower")
plt.xlabel('Entropy in 10x10 neighborhood')
plt.colorbar()
plt.savefig('color_' + finalname, bbox_inches='tight')
plt.imshow(E, cmap=plt.get_cmap("jet"), origin="lower")
plt.plot()
htmlname = newname + '_frame_' + str(frame) + '.html'
mpld3.save_html(fig, htmlname)
# mpld3.fig_to_html(fig, template_type="simple")
print 'finished!'
cap.release()
示例15: construct_plot
def construct_plot(self, save_template=False, template_name="model.html"):
# build plot data
fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE'))
scatter = ax.scatter(self.model_data[self.target].values,
self.model_data['prediction'].values.astype(int),
c= 'r',
cmap=plt.cm.jet)
ax.grid(color='white', linestyle='solid')
ax.set_title("Actual (target) vs. prediction", size=20)
plt.ylabel('prediction')
plt.xlabel('actual')
# create interactive tooltip, save as HTML
tooltip = mpld3.plugins.PointLabelTooltip(scatter)
mpld3.plugins.connect(fig, tooltip)
if save_template:
mpld3.save_html(fig, template_name)
return fig