本文整理汇总了Python中mpld3.fig_to_dict函数的典型用法代码示例。如果您正苦于以下问题:Python fig_to_dict函数的具体用法?Python fig_to_dict怎么用?Python fig_to_dict使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了fig_to_dict函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pcaPlot
def pcaPlot():
print 1
json = request.get_json()
# lists=[]
# for row in json:
# aa=[row["Open"],row["Close"],row["Change"],row["Volume"]]
# #print aa
# lists.append(aa)
print 2
x=colorArray(json["clusters"])
a= np.array(json["result"]).astype(np.float)
fig=plt.figure()
dims=random.sample(range(0, 3), 2)
plt.scatter(a[:,dims[0]],a[:,dims[1]], c=x)
plt.xlabel('x_values')
plt.ylabel('y_values')
plt.xlim([-4,4])
plt.ylim([-4,4])
plt.title('Scree Plot of PCA')
# X_iso = manifold.Isomap(10, n_components=2).fit_transform(mlab_pca.Y)
# #mpld3.show()
# print mpld3.fig_to_dict(fig)
return jsonify(result=mpld3.fig_to_dict(fig))
示例2: chart_template_direct
def chart_template_direct(request, disease_id, state_id):
return HttpResponse(request_url)
js_data = json.dumps(mpld3.fig_to_dict(fig))
return render_to_response('direct_plot.html', {"my_data": js_data})
示例3: api_activity_histogram
def api_activity_histogram(self,app_id,exp_uid,task):
"""
Description: returns the data to plot all API activity (for all algorithms) in a histogram with respect to time for any task in {getQuery,processAnswer,predict}
Expected input:
(string) task : must be in {'getQuery','processAnswer','predict'}
Expected output (in dict):
(dict) MPLD3 plot dictionary
"""
list_of_log_dict,didSucceed,message = self.ell.get_logs_with_filter(app_id+':APP-CALL',{'exp_uid':exp_uid,'task':task})
from datetime import datetime
from datetime import timedelta
start_date_str,didSucceed,message = self.db.get('experiments_admin',exp_uid,'start_date')
start_date = utils.str2datetime(start_date_str)
numerical_timestamps = [ ( utils.str2datetime(item['timestamp'])-start_date).total_seconds() for item in list_of_log_dict]
import matplotlib.pyplot as plt
import mpld3
fig, ax = plt.subplots(subplot_kw=dict(axisbg='#FFFFFF'),figsize=(12,1.5))
ax.hist(numerical_timestamps,int(1+4*numpy.sqrt(len(numerical_timestamps))),alpha=0.5,color='black')
ax.set_frame_on(False)
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
ax.get_yaxis().set_visible(False)
ax.set_xlim(0, max(numerical_timestamps))
plot_dict = mpld3.fig_to_dict(fig)
return plot_dict
示例4: run
def run(self):
# Pass DataFrame itself into task?
# Pointless to read url, write to csv, then read csv
alertsdata = pandas.read_csv(self.input().path)
alertsdata.columns = [x.replace('#','').strip().lower() for x in alertsdata.columns.values.tolist()]
ra = np.array(alertsdata['radeg'])
dec = np.array(alertsdata['decdeg'])
mag = np.array(alertsdata['alertmag'])
alclass = np.array(alertsdata['class'])
cmap = mpl.cm.rainbow
classes = list(set(alclass))
colours = {classes[i]: cmap(i / float(len(classes))) for i in range(len(classes))}
fig = plt.figure()
for i in range(len(ra)):
plt.plot(ra[i], dec[i], 'o', ms=self.magtopoint(mag[i], mag), color=colours[alclass[i]])
plt.xlabel('Right Ascension')
plt.ylabel('Declination')
with open(self.output().path, 'w') as out:
json.dump(mpld3.fig_to_dict(fig), out)
示例5: network_delay_histogram
def network_delay_histogram(self, app, butler, alg_label):
"""
Description: returns the data to network delay histogram of the time it takes to getQuery+processAnswer for each algorithm
Expected input:
(string) alg_label : must be a valid alg_label contained in alg_list list of dicts
Expected output (in dict):
(dict) MPLD3 plot dictionary
"""
list_of_query_dict,didSucceed,message = self.db.get_docs_with_filter(app.app_id+':queries',{'exp_uid':app.exp_uid,'alg_label':alg_label})
t = []
for item in list_of_query_dict:
try:
t.append(item['network_delay'])
except:
pass
fig, ax = plt.subplots(subplot_kw=dict(axisbg='#FFFFFF'))
ax.hist(t,MAX_SAMPLES_PER_PLOT,range=(0,5),alpha=0.5,color='black')
ax.set_xlim(0, 5)
ax.set_axis_off()
ax.set_xlabel('Durations (s)')
ax.set_ylabel('Count')
ax.set_title(alg_label + " - network delay", size=14)
plot_dict = mpld3.fig_to_dict(fig)
plt.close()
return plot_dict
示例6: update_figure
def update_figure(self, rnd_draws):
# regenerate matplotlib plot
self.ax1.cla()
self.ax1.set_xlabel('r1')
self.ax1.set_ylabel('Normalized Distribtuion')
self.ax1.set_xlim(0, 1)
self.ax1.set_ylim(0, 1.5)
self.ax1.grid(True)
self.ax1.hist(
[r[0] for r in rnd_draws], 50,
normed=1, facecolor='green', alpha=0.75
)
self.ax2.cla()
self.ax2.set_xlabel('r2')
self.ax2.set_ylabel('Normalized Distribtuion')
self.ax2.set_xlim(0, 1)
self.ax2.set_ylim(0, 1.5)
self.ax2.grid(True)
self.ax2.hist(
[r[1] for r in rnd_draws], 50,
normed=1, facecolor='blue', alpha=0.75
)
# send new matplotlib plots to frontend
self.emit('mpld3canvas', mpld3.fig_to_dict(self.fig))
示例7: plot_grid_3d
def plot_grid_3d(X_range, Y_range, Z, X_label='X', Y_label='Y', Z_label='Z', json_data=False):
fig = plt.figure(figsize=(18,6))
ax = fig.add_subplot(1, 1, 1, projection='3d')
X, Y = np.meshgrid(X_range, Y_range)
Zm = Z #zip(*Z)
# print "[plot_check]", np.shape(X_range), np.shape(Y_range), np.shape(X), np.shape(Y), np.shape(Z)
p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)
x_offset = (max(X_range) - min(X_range))*0.2
y_offset = (max(Y_range) - min(Y_range))*0.2
Zmax = max(max(Zm))
Zmin = min(min(Zm))
z_offset = (Zmax - Zmin)*0.2
cset = ax.contour(X, Y, Z, zdir='x', offset=X_range[0]-x_offset, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=Y_range[-1]+y_offset, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='z', offset=Zmin-z_offset, cmap=cm.coolwarm)
ax.set_xlabel(X_label)
ax.set_ylabel(Y_label)
ax.set_zlabel(Z_label)
ax.set_xlim(X_range[0]-x_offset, X_range[-1])
ax.set_ylim(Y_range[0], Y_range[-1]+y_offset)
ax.set_zlim(Zmin-z_offset, Zmax+z_offset)
cb = fig.colorbar(p, shrink=0.5)
# print "[mpld3] before json serialize."
if json_data: return mpld3.fig_to_dict(fig)
示例8: pcaGraph
def pcaGraph():
json = request.get_json()
# lists=[]
# for row in json:
# aa=[row["Open"],row["Close"],row["Change"],row["Volume"]]
# #print aa
# lists.append(aa)
x=colorArray(json["clusters"])
a= np.array(json["result"]).astype(np.float)
# print a
fig=plt.figure()
plt.scatter(a[:,0],a[:,1], c=x)
plt.xlabel('x_values')
plt.ylabel('y_values')
plt.xlim([-4,4])
plt.ylim([-4,4])
plt.title('PCA Graph')
# X_iso = manifold.Isomap(10, n_components=2).fit_transform(mlab_pca.Y)
# mpld3.show()
# print mpld3.fig_to_dict(fig)
return jsonify(result=mpld3.fig_to_dict(fig))
示例9: mdsGraph
def mdsGraph():
json = request.get_json()
# lists=[]
# for row in json:
# aa=[row["Open"],row["Close"],row["Change"],row["Volume"]]
# #print aa
# lists.append(aa)
# x =[]
# clusters=json["clusters"]
# tmp=[0]*clusters[0]
# x.extend(tmp)
# tmp=[50]*clusters[1]
# x.extend(tmp)
# tmp=[100]*clusters[2]
# x.extend(tmp)
# x=np.array(x)
x=colorArray(json["clusters"])
a= np.array(json["result"]).astype(np.float)
Y = manifold.MDS(2 , max_iter=100, n_init=4).fit_transform(a)
fig=plt.figure()
plt.scatter(Y[:,0],Y[:,1],c=x)
plt.xlabel('x_values')
plt.ylabel('y_values')
plt.xlim([-4,4])
plt.ylim([-4,4])
plt.title('MDS Graph')
# X_iso = manifold.Isomap(10, n_components=2).fit_transform(mlab_pca.Y)
# #mpld3.show()
# print mpld3.fig_to_dict(fig)
return jsonify(result=mpld3.fig_to_dict(fig))
示例10: _plot_figure
def _plot_figure(self, idx):
from .display_hooks import display_frame
self.plot.update(idx)
if OutputMagic.options['backend'] == 'd3':
import mpld3
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fontsize=14))
return mpld3.fig_to_dict(self.plot.state)
return display_frame(self.plot, **self.display_options)
示例11: _plot_figure
def _plot_figure(self, idx):
from .display_hooks import display_figure
fig = self.plot[idx]
if OutputMagic.options['backend'] == 'd3':
import mpld3
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fontsize=14))
return mpld3.fig_to_dict(fig)
return display_figure(fig)
示例12: get_statistics_rasterplot
def get_statistics_rasterplot(videoname, runname):
with Run(videoname, runname) as run:
run['time_per_bin'] = float(request.form['time_per_bin'])
fig_raster = analyzer.plot.plot_rasterplot(run['statistics']['spikes'],
run['exposure_time'],
run['time_per_bin'])
rasterplot = mpld3.fig_to_dict(fig_raster)
return jsonify(rasterplot=rasterplot)
示例13: on_run
def on_run(self):
"""Run when button is pressed."""
self.emit('log', 'Hi. The run button was pressed. Going to sleep.')
time.sleep(self.sleep_duration)
self.emit('log', 'Waking up again. Run is done.')
# draw something on self.fig
# regenerate matplotlib plot
self.ax.cla()
self.ax.set_xlabel('output of random.random()')
self.ax.set_ylabel('normalized distribtuion of 100 trials')
self.ax.set_xlim(0, 1)
self.ax.set_ylim(0, 1.5)
self.ax.grid(True)
self.ax.hist(
[random.random() for i in xrange(100)], 5,
normed=1, facecolor='green', alpha=0.75
)
self.emit('mpld3canvas', mpld3.fig_to_dict(self.fig))
# create the data for the Basic d3.js part
data = [
{'id': 1, 'x1': 0.1, 'y1': 0.1, 'x2': 0.8, 'y2': 0.5,
'width': 0.05, 'color': 0.5},
{'id': 2, 'x1': 0.1, 'y1': 0.3, 'x2': 0.8, 'y2': 0.7,
'width': 0.05, 'color': 0.7},
{'id': 3, 'x1': 0.1, 'y1': 0.5, 'x2': 0.8, 'y2': 0.9,
'width': 0.05, 'color': 0.9},
]
self.emit('update_basic', data)
# update with some new data after a short wait
time.sleep(1)
data2 = [
{'id': 1, 'x1': 0.1, 'y1': 0.1, 'x2': 0.8, 'y2': 0.5,
'width': 0.2, 'color': 0.5},
{'id': 2, 'x1': 0.1, 'y1': 0.3, 'x2': 0.8, 'y2': 0.7,
'width': 0.2, 'color': 0.7},
{'id': 3, 'x1': 0.1, 'y1': 0.5, 'x2': 0.8, 'y2': 0.9,
'width': 0.2, 'color': 0.9},
]
self.emit('update_basic', data2)
# create and send data for the d3.js plot
self.emit('log', 'Increasing numbers.')
self.emit('update_plot', [0.1, 0.3, 0.5, 0.7, 0.9])
time.sleep(1)
self.emit('log', 'Random numbers.')
self.emit('update_plot', [random.random() for i in xrange(5)])
time.sleep(1)
# Animation of a sin wave. Use numpy.
self.emit('log', 'Animate a sin wave.')
x = numpy.linspace(0, numpy.pi, 5)
for t in xrange(50):
numpy_data = 0.5 + 0.4*numpy.sin(x + t/3.0)
self.emit('update_plot', numpy_data.tolist())
time.sleep(0.25)
示例14: plot_grid_2d
def plot_grid_2d(X, Z, X_label='X', Z_label='Z', json_data=False):
fig = plt.figure(figsize=(6,2.5))
ax = fig.add_subplot(1, 1, 1)
p = ax.plot(X, Z)
ax.set_xlabel(X_label)
ax.set_ylabel(Z_label)
if json_data:
chart_data = mpld3.fig_to_dict(fig)
plt.close()
return chart_data
示例15: viz_content
def viz_content():
params = get_params(request)
df = get_events_by_content(g.db_engine, params)
ax = df.plot(x='loaded', y='played', kind='scatter', figsize=(12, 8))
mpld3_data = mpld3.fig_to_dict(ax.get_figure())
url_format = lambda x: '<a href="%s">%s</a>' % (x, x)
table_html = df.head(20).to_html(classes=['table'], formatters={'content_url': url_format})
return render_template('base_viz.html', \
clients=get_clients(), content_hosts=get_content_hosts(), params=params, \
data_table=table_html, mpld3_data=json.dumps(mpld3_data))