本文整理汇总了Python中mpl_toolkits.mplot3d.Axes3D.plot_trisurf方法的典型用法代码示例。如果您正苦于以下问题:Python Axes3D.plot_trisurf方法的具体用法?Python Axes3D.plot_trisurf怎么用?Python Axes3D.plot_trisurf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mpl_toolkits.mplot3d.Axes3D
的用法示例。
在下文中一共展示了Axes3D.plot_trisurf方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: read_and_overview
# 需要导入模块: from mpl_toolkits.mplot3d import Axes3D [as 别名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import plot_trisurf [as 别名]
import glob
def read_and_overview(filename):
"""Read NetCDF using read_generic_netcdf and print upper level dictionary keys
"""
test = read_generic_netcdf(filename)
print("\nPrint keys for file %s" % os.path.basename(filename))
for key in test.keys():
print("\t%s" % key)
pfad = ('/automount/ags/velibor/gpmdata/nicht3dComposit/*.nc')
pfad_3d = sorted(glob.glob(pfad))[1]
comp3d = get_wradlib_data_file(pfad_3d)
read_and_overview(comp3d)
from netCDF4 import Dataset
import numpy as np
comp3d = Dataset(pfad_3d, mode='r')
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
Axes3D.plot_trisurf(x,y,z)
示例2: open
# 需要导入模块: from mpl_toolkits.mplot3d import Axes3D [as 别名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import plot_trisurf [as 别名]
# cPickle.dump([difficulties, generosities, ave_switches], handle)
#read
with open(filename, 'rb') as handle:
data = cPickle.load(handle)
difficulties=data[0]
generosities=data[1]
ave_switches=data[2]
fig = plt.figure()
ax = Axes3D(fig)
Axes3D.scatter(ax, difficulties, generosities, ave_switches, cmap=cm.jet)
Axes3D.plot_trisurf(ax, difficulties, generosities, ave_switches, cmap=cm.jet)
plt.show()
print ave_switches
# griddata and contour.
xi = np.linspace(min(difficulties),max(difficulties),15)
yi = np.linspace(min(generosities),max(generosities),15)
xi = np.linspace(0,1,15)
yi = np.linspace(0,1,15)
print len(difficulties), len(generosities), len(ave_switches)
示例3: block_analysis
# 需要导入模块: from mpl_toolkits.mplot3d import Axes3D [as 别名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import plot_trisurf [as 别名]
def block_analysis(model=False):
# BLOCK BY BLOCK
pre_metacog_switches={0:[], 1:[], 2:[]}
post_metacog_switches={0:[], 1:[], 2:[]}
difficulties={0:[], 1:[], 2:[]}
generosities={0:[], 1:[], 2:[]}
pre_met_swi_rews={0:[], 1:[], 2:[]}
post_met_swi_rews={0:[], 1:[], 2:[]}
for condition in set(data.conditions):
for payrate in set(data.payrates):
pre_metacog_switches[condition].append(gameAnalyzer.metacog_switches(data.bandit_data[condition][payrate], n_trials=subject_trials, post_metacog=False))
post_metacog_switches[condition].append(gameAnalyzer.metacog_switches(data.bandit_data[condition][payrate], n_trials=subject_trials, post_metacog=True))
difficulties[condition].append(1-abs(payrate[1]-payrate[0]))
generosities[condition].append((payrate[1]+payrate[0])/2)
pre_met_swi_rews[condition].append(gameAnalyzer.metacog_rewards(data.bandit_data[condition][payrate], n_trials=subject_trials, post_metacog=False))
post_met_swi_rews[condition].append(gameAnalyzer.metacog_rewards(data.bandit_data[condition][payrate], n_trials=subject_trials, post_metacog=True))
print pre_metacog_switches
print post_metacog_switches
print np.mean(pre_metacog_switches[0])
print np.mean(pre_metacog_switches[1])
print np.mean(pre_metacog_switches[2])
print np.mean(post_metacog_switches[0])
print np.mean(post_metacog_switches[1])
print np.mean(post_metacog_switches[2])
s0=sum(post_metacog_switches[0])
s1=sum(post_metacog_switches[1])
print s0, s1
print pre_met_swi_rews
print post_met_swi_rews
print np.mean(post_met_swi_rews[0]), np.mean(post_met_swi_rews[1])
normdif0=np.array(post_metacog_switches[0])-np.array(post_met_swi_rews[0])
normdif1=np.array(post_metacog_switches[1])-np.array(post_met_swi_rews[1])
print normdif0
print normdif1
print np.mean(normdif0), np.mean(normdif1)
collapsing=np.array(post_metacog_switches[0])-np.array(post_metacog_switches[1])
normcollapsing=normdif0-normdif1
# p=0.057
print 'pvalue from ttest: {0}'.format(stats.ttest_rel(post_metacog_switches[0],post_metacog_switches[1])[1])
print 'same for rewards (pvalue from ttest): {0}'.format(stats.ttest_rel(post_met_swi_rews[0], post_met_swi_rews[1])[1])
print '...and subtracted: {0}'.format(stats.ttest_rel(normdif0, normdif1)[1])
fig = plt.figure()
ax = Axes3D(fig)
Axes3D.scatter(ax, difficulties[0], generosities[0], collapsing, cmap=cm.jet)
Axes3D.plot_trisurf(ax, difficulties[0], generosities[0], collapsing, cmap=cm.jet)
plt.show()
# griddata and contour.
xi = np.linspace(min(difficulties[0]),max(difficulties[0]),15)
yi = np.linspace(min(generosities[0]),max(generosities[0]),15)
xi = np.linspace(0,1,15)
yi = np.linspace(0,1,15)
print len(difficulties[0]), len(generosities[0]), len(collapsing)
zi = griddata(difficulties[0],generosities[0],collapsing,xi,yi,interp='nn')#linear')
#plt.contour(xi,yi,zi,15,linewidths=0.5,colors='k')
plt.contourf(xi,yi,zi,cmap=cm.jet)#,
#norm=plt.normalize(vmax=abs(zi).max(), vmin=-abs(zi).max()))
plt.scatter(difficulties[0], generosities[0], marker='s', c=collapsing, s=200, cmap=cm.jet)
plt.colorbar() # draw colorba
plt.xlim([0,1])
plt.ylim([0,1])
plt.show()
# plt.scatter(difficulties[0], generosities[0], marker='s', c=collapsing, s=200, cmap=cm.coolwarm)
# plt.colorbar()
# plt.xlim([0,1])
# plt.ylim([0,1])
# plt.show()
if model:
#MCMC inference for rate difference
modeldata=np.array([post_metacog_switches[0],post_metacog_switches[1]])
#modeldata=np.array([post_met_swi_rews[0],post_met_swi_rews[1]]) #this is dubious, but good, nonsignificant
#modeldata=np.array([normdif0,normdif1]) #this does not work, negative values.. should adapt model for negative reward triggering switch.
model=pymc.MCMC(rateDifferenceModel.make_model(modeldata, subject_trials))
#.........这里部分代码省略.........