本文整理汇总了Python中mpl_toolkits.axes_grid1.inset_locator.zoomed_inset_axes函数的典型用法代码示例。如果您正苦于以下问题:Python zoomed_inset_axes函数的具体用法?Python zoomed_inset_axes怎么用?Python zoomed_inset_axes使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了zoomed_inset_axes函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_zooming_with_inverted_axes
def test_zooming_with_inverted_axes():
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [1, 2, 3])
ax.axis([1, 3, 1, 3])
inset_ax = zoomed_inset_axes(ax, zoom=2.5, loc='lower right')
inset_ax.axis([1.1, 1.4, 1.1, 1.4])
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [1, 2, 3])
ax.axis([3, 1, 3, 1])
inset_ax = zoomed_inset_axes(ax, zoom=2.5, loc='lower right')
inset_ax.axis([1.4, 1.1, 1.4, 1.1])
示例2: plot_us
def plot_us(lats, lons, save_name=None):
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
big_map = Basemap(resolution='h',
lat_0=36, lon_0=-107.5,
llcrnrlat=32, llcrnrlon=-125,
urcrnrlat=43, urcrnrlon=-110)
big_map.drawcoastlines()
big_map.drawstates()
big_map.drawcountries()
big_map.drawmapboundary(fill_color='#7777ff')
big_map.fillcontinents(color='#ddaa66', lake_color='#7777ff', zorder=0)
x, y = big_map(lons, lats)
big_map.plot(x[0], y[0], 'ro', markersize=2)
axins = zoomed_inset_axes(ax, 20, loc=1)
ll_lat, ll_lon = 37.8, -122.78
ur_lat, ur_lon = 38.08, -122.43
axins.set_xlim(ll_lon, ur_lon)
axins.set_ylim(ur_lon, ur_lat)
small_map = Basemap(resolution='h',
llcrnrlat=ll_lat, llcrnrlon=ll_lon,
urcrnrlat=ur_lat, urcrnrlon=ur_lon,
ax=axins)
small_map.drawcoastlines()
small_map.drawmapboundary(fill_color='#7777ff')
small_map.fillcontinents(color='#ddaa66', lake_color='#7777ff', zorder=0)
x, y = small_map(lons, lats)
small_map.plot(x, y, 'ro', markersize=3)
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
if save_name:
fig.savefig(save_name)
示例3: plot_linear_kernel_pairs
def plot_linear_kernel_pairs(pairs):
xdata, ydata = zip(*pairs)
maxval = max(max(xdata), max(ydata))
fig, ax = plt.subplots()
ax.plot(xdata, ydata, '.')
ax.plot([0, maxval], [0, maxval], '--')
plt.xlabel("Linear Ridge Mean Absolute Error (kcal/mol)")
plt.ylabel("Kernel Ridge Mean Absolute Error (kcal/mol)")
# 15 is the zoom, loc is nuts
axins = zoomed_inset_axes(ax, 15, loc=5)
axins.plot(xdata, ydata, '.')
axins.plot([0, maxval], [0, maxval], '--')
# sub region of the original image
axins.set_xlim(1, 6)
axins.set_ylim(1, 6)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
plt.draw()
plt.show()
示例4: plot_target_pred
def plot_target_pred(train_xdata, test_xdata, train_ydata, test_ydata, loc=5):
maxval = max(train_xdata.max(), test_xdata.max(), train_ydata.max(), test_ydata.max())
minval = min(train_xdata.min(), test_xdata.min(), train_ydata.min(), test_ydata.min())
fig, ax = plt.subplots()
ax.plot(train_xdata, train_ydata, '.', label="Train")
ax.plot(test_xdata, test_ydata, '.', label="Test")
plt.legend(loc="best")
ax.plot([minval, maxval], [minval, maxval], '--')
plt.xlabel("Target Value (kcal/mol)")
plt.ylabel("Predicted Value (kcal/mol)")
axins = zoomed_inset_axes(ax, 30, loc=loc) # 30 is zoom, loc is .... nuts
axins.plot(train_xdata, train_ydata, '.', label="Train")
axins.plot(test_xdata, test_ydata, '.', label="Test")
axins.plot([minval, maxval], [minval, maxval], '--')
# sub region of the original image
middle = test_xdata.mean() - 170
x1, x2, y1, y2 = -15+middle, 15+middle, -15+middle, 15+middle
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
mark_inset(ax, axins, loc1=2, loc2=3, fc="none", ec="0.5")
plt.draw()
plt.show()
示例5: inset_momentum_axes
def inset_momentum_axes(cd):
# TODO: This plot does not refresh correctly, skip the inset
fig = mpl.figure(cd.plotfigure.figno)
axes = fig.add_subplot(111)
# Plot main figure
axes.plot(cd.x, hu_1(cd), 'b-')
axes.plot(cd.x, hu_2(cd), 'k--')
axes.set_xlim(xlimits)
axes.set_ylim(ylimits_momentum)
momentum_axes(cd)
# Create inset plot
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
inset_axes = zoomed_inset_axes(axes, 0.5, loc=3)
inset_axes.plot(cd.x, hu_1(cd), 'b-')
inset_axes.plot(cd.x, hu_2(cd), 'k--')
inset_axes.set_xticklabels([])
inset_axes.set_yticklabels([])
x_zoom = [-120e3,-30e3]
y_zoom = [-10,10]
inset_axes.set_xlim(x_zoom)
inset_axes.set_ylim(y_zoom)
mark_inset(axes, inset_axes, loc1=2, loc2=4, fc='none', ec="0.5")
# mpl.ion()
mpl.draw()
示例6: render_input_spectrum
def render_input_spectrum():
folder = "/cosma/home/durham/rhgk18/ls_structure/pks"
bao = folder+"/wig.txt"
nbao = folder+"/nowig.txt"
pkbao = np.loadtxt(bao)
pknbao = np.loadtxt(nbao)
fig, ax = plt.subplots()
ax.loglog(pkbao[:,0] ,pkbao[:,1] , color='r', label='With BAO')
ax.loglog(pknbao[:,0] ,pknbao[:,1] , color='b', label='Without BAO')
ax.set_xlabel("Wavenumber, $k$ [$h/Mpc$]", size=28)
ax.set_ylabel("Power, $P(k)$ [$(Mpc/h)^3$]", size=28)
ax.legend(prop={'size':28})
axins = zoomed_inset_axes(ax, 5, loc=3)
axins.loglog(pkbao[:,0] ,pkbao[:,1] , color='r', label='iWith BAO')
axins.loglog(pknbao[:,0] ,pknbao[:,1] , color='b', label='iWithout BAO')
x1, x2, y1, y2 = 0.02, 0.1, 5000, 30000
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
mark_inset(ax, axins, loc1=2, loc2=1, fc="none", ec="0.5")
plt.show()
示例7: setup_axes02
def setup_axes02(fig, rect, zoom=0.35, loc=4, axes_class=None, axes_kwargs=None):
"""
ax2 is an inset axes, but shares the x- and y-axis with ax1.
"""
from mpl_toolkits.axes_grid1.axes_grid import ImageGrid, CbarAxes
import mpl_toolkits.axes_grid1.inset_locator as inset_locator
grid = ImageGrid(fig, rect,
nrows_ncols=(1,1),
share_all=True, aspect=True,
label_mode='L', cbar_mode="each",
cbar_location='top', cbar_pad=None, cbar_size='5%',
axes_class=(axes_class, axes_kwargs))
ax1 = grid[0]
kwargs = dict(zoom=zoom, loc=loc)
ax2 = inset_locator.zoomed_inset_axes(ax1,
axes_class=axes_class,
axes_kwargs=axes_kwargs,
**kwargs
)
cax = inset_locator.inset_axes(ax2, "100%", 0.05, loc=3,
borderpad=0.,
bbox_to_anchor=(0, 0, 1, 0),
bbox_transform=ax2.transAxes,
axes_class=CbarAxes,
axes_kwargs=dict(orientation="top"),
)
ax2.cax = cax
return grid[0], ax2
示例8: create_inset_axes
def create_inset_axes(self):
ax_inset = zoomed_inset_axes(self.ax, 2, loc=1)
cm = plt.get_cmap('winter')
ax_inset.set_color_cycle([cm(1.*i/self.num_graphs)
for i in range(self.num_graphs)])
# hide every other tick label
for label in ax_inset.get_xticklabels()[::4]:
label.set_visible(False)
return ax_inset
示例9: test_gettightbbox
def test_gettightbbox():
fig, ax = plt.subplots(figsize=(8, 6))
l, = ax.plot([1, 2, 3], [0, 1, 0])
ax_zoom = zoomed_inset_axes(ax, 4)
ax_zoom.plot([1, 2, 3], [0, 1, 0])
mark_inset(ax, ax_zoom, loc1=1, loc2=3, fc="none", ec='0.3')
remove_ticks_and_titles(fig)
bbox = fig.get_tightbbox(fig.canvas.get_renderer())
np.testing.assert_array_almost_equal(bbox.extents,
[-17.7, -13.9, 7.2, 5.4])
示例10: makeplot
def makeplot(refl, winds, w, stride, map, gs, title, file_name, box=None):
pylab.figure()
axmain = pylab.axes((0, 0.025, 1, 0.9))
gs_x, gs_y = gs
nx, ny = refl.shape
xs, ys = np.meshgrid(gs_x * np.arange(nx), gs_y * np.arange(ny))
pylab.contourf(xs, ys, refl, levels=np.arange(10, 80, 10))
pylab.colorbar()
pylab.contour(xs, ys, w, levels=np.arange(-10, 0, 2), colors='#666666', style='--')
pylab.contour(xs, ys, w, levels=np.arange(2, 12, 2), colors='#666666', style='-')
u, v = winds
wind_slice = tuple([ slice(None, None, stride) ] * 2)
pylab.quiver(xs[wind_slice], ys[wind_slice], u[wind_slice], v[wind_slice])
if box:
lb_y, lb_x = [ b.start for b in box ]
ub_y, ub_x = [ b.stop for b in box ]
box_xs = gs_x * np.array([ lb_x, lb_x, ub_x, ub_x, lb_x])
box_ys = gs_y * np.array([ lb_y, ub_y, ub_y, lb_y, lb_y])
map.plot(box_xs, box_ys, '#660099')
axins = zoomed_inset_axes(pylab.gca(), 4, loc=4)
pylab.sca(axins)
pylab.contourf(xs[box], ys[box], refl[box], levels=np.arange(10, 80, 10))
pylab.contour(xs[box], ys[box], w[box], levels=np.arange(-10, 0, 2), colors='#666666', style='--')
pylab.contour(xs[box], ys[box], w[box], levels=np.arange(2, 12, 2), colors='#666666', style='-')
pylab.quiver(xs[box], ys[box], u[box], v[box])
drawPolitical(map)
pylab.xlim([lb_x * gs_x, ub_x * gs_x - 1])
pylab.ylim([lb_y * gs_y, ub_y * gs_y - 1])
mark_inset(axmain, axins, loc1=1, loc2=3, fc='none', ec='k')
pylab.sca(axmain)
drawPolitical(map)
pylab.suptitle(title)
pylab.savefig(file_name)
pylab.close()
return
示例11: test_inset_locator
def test_inset_locator():
def get_demo_image():
from matplotlib.cbook import get_sample_data
import numpy as np
f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False)
z = np.load(f)
# z is a numpy array of 15x15
return z, (-3, 4, -4, 3)
fig, ax = plt.subplots(figsize=[5, 4])
# prepare the demo image
Z, extent = get_demo_image()
Z2 = np.zeros([150, 150], dtype="d")
ny, nx = Z.shape
Z2[30:30 + ny, 30:30 + nx] = Z
# extent = [-3, 4, -4, 3]
ax.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins = zoomed_inset_axes(ax, zoom=6, loc='upper right')
axins.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins.yaxis.get_major_locator().set_params(nbins=7)
axins.xaxis.get_major_locator().set_params(nbins=7)
# sub region of the original image
x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
asb = AnchoredSizeBar(ax.transData,
0.5,
'0.5',
loc='lower center',
pad=0.1, borderpad=0.5, sep=5,
frameon=False)
ax.add_artist(asb)
示例12: plotConfusion
def plotConfusion(confusion, grid, title, file_name, inset=None, fudge=16):
pylab.figure()
axmain = pylab.axes()
tick_labels = [ "Missing", "Correct\nNegative", "False\nAlarm", "Miss", "Hit" ]
min_label = -1
xs, ys = grid.getXY()
pylab.pcolormesh(xs, ys, confusion, cmap=confusion_cmap, vmin=min_label, vmax=(min_label + len(tick_labels) - 1))
tick_locs = np.linspace(-1, min_label + len(tick_labels) - 2, len(tick_labels))
tick_locs += (tick_locs[1] - tick_locs[0]) / 2
bar = pylab.colorbar()
bar.locator = FixedLocator(tick_locs)
bar.formatter = FixedFormatter(tick_labels)
pylab.setp(pylab.getp(bar.ax, 'ymajorticklabels'), fontsize='large')
bar.update_ticks()
grid.drawPolitical()
if inset:
lb_y, lb_x = [ b.start for b in inset ]
ub_y, ub_x = [ b.stop + fudge for b in inset ]
inset_exp = (slice(lb_y, ub_y), slice(lb_x, ub_x))
axins = zoomed_inset_axes(pylab.gca(), 2, loc=4)
pylab.sca(axins)
pylab.pcolormesh(xs[inset_exp], ys[inset_exp], confusion[inset_exp], cmap=confusion_cmap, vmin=min_label, vmax=(min_label + len(tick_labels) - 1))
grid.drawPolitical()
gs_x, gs_y = grid.getGridSpacing()
pylab.xlim([lb_x * gs_x, (ub_x - 1) * gs_x])
pylab.ylim([lb_y * gs_y, (ub_y - 1) * gs_y])
mark_inset(axmain, axins, loc1=1, loc2=3, fc='none', ec='k')
pylab.sca(axmain)
pylab.suptitle(title)
pylab.savefig(file_name)
pylab.close()
return
示例13: draw_inset
def draw_inset(plt, m, pos, lat, lon):
ax = plt.subplot(111)
zoom = 50
axins = zoomed_inset_axes(ax, zoom, loc=1)
m.plot(lon, lat, '.b--', zorder=10, latlon=True)
m.scatter(lon, lat, # longitude first!
latlon=True, # lat and long in degrees
zorder=11) # on top of all
x1, y1 = m(lon[1] - 0.005, lat[0] - 0.0025)
x2, y2 = m(lon[1] + 0.005, lat[0] + 0.0025)
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
示例14: plot_calibration
def plot_calibration(c, insert = True):
fig = plt.figure()
ax = plt.gca()
for baseline, correlation in c.time_domain_correlations_values.items():
correlation_max_val = correlation[np.argmax(correlation)]
correlation_max_time = c.time_domain_correlations_times[baseline][np.argmax(correlation)]
lines = ax.plot(
c.time_domain_correlations_times[baseline] * 1e9,
correlation / correlation_max_val,
label = baseline)
#ax.plot([correlation_max_time, correlation_max_time], [0, correlation_max_val], color = lines[0].get_color())
ax.set_ylim(top=1.2)
ax.xaxis.set_ticks(np.arange(
-200,
200,
2))
if insert == True:
#axins = zoomed_inset_axes(ax, 5, loc=1)
axins = zoomed_inset_axes(ax, 9, loc=1)
for baseline, correlation in c.time_domain_correlations_values.items():
correlation_max_val = correlation[np.argmax(correlation)]
correlation_max_time = c.time_domain_correlations_times[baseline][np.argmax(correlation)]
lines = axins.plot(
c.time_domain_correlations_times[baseline] * 1e9,
correlation / correlation_max_val,
label = baseline,
linewidth=2)
#axins.plot([correlation_max_time, correlation_max_time], [0, correlation_max_val], color = lines[0].get_color())
#axins.set_xlim(-0.4, 2.9)
axins.set_xlim(-0.4, 0.4)
#axins.set_ylim(0.90, 1.04)
axins.set_ylim(0.96, 1.03)
#axins.xaxis.set_ticks(np.arange(-0.4, 2.9, 0.4))
axins.xaxis.set_ticks(np.arange(-0.4, 0.4, 0.2))
mark_inset(ax, axins, loc1=2, loc2=3, fc='none', ec='0.5')
plt.xticks(visible=True)
plt.yticks(visible=False)
ax.set_title("Time domain cross correlations with broad band noise\n arriving through full RF chain AFTER calibration")
ax.set_xlabel("Time delay (ns)")
ax.set_ylabel("Cross correlation value (normalised)")
ax.legend(loc=2)
#ax.legend()
plt.show()
示例15: plot_site
def plot_site(options):
options['prefix'] = 'site'
fig = MyFig(options, figsize=(10, 8), legend=True, grid=False, xlabel=r'Probability $p_s$', ylabel=r'Reachability~$\reachability$', aspect='auto')
fig_vs = MyFig(options, figsize=(10, 8), legend=True, grid=False, xlabel=r'Fraction of Forwarded Packets~$\forwarded$', ylabel=r'Reachability~$\reachability$', aspect='auto')
if options['grayscale']:
colors = options['graycm'](pylab.linspace(0, 1.0, 3))
else:
colors = fu_colormap()(pylab.linspace(0, 1.0, 3))
nodes = 105
axins = None
if options['inset_loc'] >= 0:
axins = zoomed_inset_axes(fig_vs.ax, options['inset_zoom'], loc=options['inset_loc'])
axins.set_xlim(options['inset_xlim'])
axins.set_ylim(options['inset_ylim'])
axins.set_xticklabels([])
axins.set_yticklabels([])
mark_inset(fig_vs.ax, axins, loc1=2, loc2=3, fc="none", ec="0.5")
for i, (name, label) in enumerate(names):
data = parse_site_only(options['datapath'][0], name)
rs = numpy.array([r for p, r, std, conf, n, fw, fw_std, fw_conf in data if r <= options['limit']])
fws = numpy.array([fw for p, r, std, conf, n, fw, fw_std, fw_conf in data if r <= options['limit']])/(nodes-1)
ps = numpy.array([p for p, r, std, conf, n, fw, fw_std, fw_conf in data]) #[0:len(rs)])
yerr = numpy.array([conf for p,r,std,conf, n, fw, fw_std, fw_conf in data]) #[0:len(rs)])
patch_collection = PatchCollection([conf2poly(ps, list(rs+yerr), list(rs-yerr), color=colors[i])], match_original=True)
patch_collection.set_alpha(0.3)
patch_collection.set_linestyle('dashed')
fig.ax.add_collection(patch_collection)
fig.ax.plot(ps, rs, label=label, color=colors[i])
fig_vs.ax.plot(fws, rs, label=label, color=colors[i])
if axins:
axins.plot(fws, rs, color=colors[i])
fig.ax.set_ylim(0, options['limit'])
fig.legend_title = 'Graph'
fig.save('graphs')
fig_vs.legend_title = 'Graph'
fig_vs.ax.set_xlim(0,1)
fig_vs.ax.set_ylim(0,1)
fig_vs.save('vs_pb')