本文整理汇总了Python中mpl_toolkits.axes_grid1.inset_locator.mark_inset函数的典型用法代码示例。如果您正苦于以下问题:Python mark_inset函数的具体用法?Python mark_inset怎么用?Python mark_inset使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了mark_inset函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: chickling_pd_zoom
def chickling_pd_zoom(shotno, date=time.strftime("%Y%m%d")):
fname, data = file_finder(shotno,date)
data_1550 = data[0]['phasediff_co2'][100:]
plot_time = np.linspace(0,1,data_1550.size)
fig, ax = plt.subplots()
ax.plot(plot_time, data_1550)
ax.set_ybound(max(data_1550)+0.6, min(data_1550)-0.01)
plt.title("Phase Difference for shot " + str(shotno) + " Date " + str(date))
plt.xlabel("Time, s")
plt.ylabel("Phase Difference, Radians")
x_zoom_bot = int(data_1550.size*(10/100))
x_zoom_top = int(data_1550.size*(15/100))
x1, x2, y1, y2 = 0.1, 0.15, max(data_1550[x_zoom_bot:x_zoom_top])+0.01, min(data_1550[x_zoom_bot:x_zoom_top])-0.01
axins = inset_axes(ax, 4.3,1, loc=9)
axins.plot(plot_time[x_zoom_bot:x_zoom_top], data_1550[x_zoom_bot:x_zoom_top])
axins.set_xlim(x1, x2)
if y1 < y2:
axins.set_ylim(y1, y2)
else:
axins.set_ylim(y2, y1)
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5",lw=2)
plt.show()
示例2: QQplot
def QQplot(obs, Q, pos, color=None, ax=None, axins=True):
if not color:
color='blue'
if ax is None:
ax = plt.gca()
mean = np.mean(obs, axis=0)
# obs = np.random.multivariate_normal(mean, S, 3000)
md2 = np.diag(np.dot(np.dot(obs - mean, Q), (obs -mean).T))
sorted_md2 = np.sort(md2)
v = (np.arange(1, obs.shape[0] + 1) - 0.375) / (obs.shape[0] + 0.25)
quantiles = scipy.stats.chi2.ppf(v, df=obs.shape[1])
# axins = inset_axes(ax, width="60%", height=1., loc=2)
if axins:
axins = inset_axes(ax, width="60%", height=1., loc=2)
axins.axis(pos)
axins.get_xaxis().tick_bottom()
axins.get_yaxis().tick_left()
# Remove the tick marks; they are unnecessary with the tick lines we just plotted.
axins.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="off", left="off", right="off", labelleft="off")
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
axins.xaxis.set_major_locator(MaxNLocator(nbins=1, prune='lower'))
axins.scatter(quantiles, sorted_md2, color=colorscheme[color], alpha=0.3)
axins.plot(quantiles, quantiles, color=colorscheme['green'], lw=2.5)
ax.scatter(quantiles, sorted_md2, color=colorscheme[color], alpha=0.3)
ax.plot(quantiles, quantiles, color=colorscheme['green'], lw=2.5)
_clean_axes(ax)
示例3: plot_linear_kernel_pairs
def plot_linear_kernel_pairs(pairs):
xdata, ydata = zip(*pairs)
maxval = max(max(xdata), max(ydata))
fig, ax = plt.subplots()
ax.plot(xdata, ydata, '.')
ax.plot([0, maxval], [0, maxval], '--')
plt.xlabel("Linear Ridge Mean Absolute Error (kcal/mol)")
plt.ylabel("Kernel Ridge Mean Absolute Error (kcal/mol)")
# 15 is the zoom, loc is nuts
axins = zoomed_inset_axes(ax, 15, loc=5)
axins.plot(xdata, ydata, '.')
axins.plot([0, maxval], [0, maxval], '--')
# sub region of the original image
axins.set_xlim(1, 6)
axins.set_ylim(1, 6)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
plt.draw()
plt.show()
示例4: show_insets
def show_insets(image, insets_coords, size=(6, 3)):
fig = pyplot.figure(figsize=size)
line_colors = colors.LinearSegmentedColormap.from_list("line_colors", ["red", "blue"], len(insets_coords))
gs = gridspec.GridSpec(len(insets_coords), 2)
main_ax = fig.add_subplot(gs[:, 0])
main_extent = (0, image.shape[1], image.shape[0], 0)
main_ax_img = main_ax.imshow(image, interpolation="nearest", extent=main_extent, origin="upper")
main_ax_img.set_cmap("binary_r")
pyplot.setp(main_ax.get_yticklabels(), visible=False)
pyplot.setp(main_ax.get_xticklabels(), visible=False)
for inset_index, inset_coords in enumerate(insets_coords):
inset_ax = fig.add_subplot(gs[inset_index, 1])
inset_ax_img = inset_ax.imshow(image, interpolation="nearest", extent=main_extent, origin="upper")
inset_ax_img.set_cmap("binary_r")
inset_ax.set_ylim(inset_coords[0].stop, inset_coords[0].start)
inset_ax.set_xlim(inset_coords[1].start, inset_coords[1].stop)
pyplot.setp(inset_ax.get_yticklabels(), visible=False)
pyplot.setp(inset_ax.get_xticklabels(), visible=False)
mark_inset(main_ax, inset_ax, loc1=1, loc2=3, fc="none", ec=line_colors(inset_index))
gs.tight_layout(fig)
return fig
示例5: inset_momentum_axes
def inset_momentum_axes(cd):
# TODO: This plot does not refresh correctly, skip the inset
fig = mpl.figure(cd.plotfigure.figno)
axes = fig.add_subplot(111)
# Plot main figure
axes.plot(cd.x, hu_1(cd), 'b-')
axes.plot(cd.x, hu_2(cd), 'k--')
axes.set_xlim(xlimits)
axes.set_ylim(ylimits_momentum)
momentum_axes(cd)
# Create inset plot
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
inset_axes = zoomed_inset_axes(axes, 0.5, loc=3)
inset_axes.plot(cd.x, hu_1(cd), 'b-')
inset_axes.plot(cd.x, hu_2(cd), 'k--')
inset_axes.set_xticklabels([])
inset_axes.set_yticklabels([])
x_zoom = [-120e3,-30e3]
y_zoom = [-10,10]
inset_axes.set_xlim(x_zoom)
inset_axes.set_ylim(y_zoom)
mark_inset(axes, inset_axes, loc1=2, loc2=4, fc='none', ec="0.5")
# mpl.ion()
mpl.draw()
示例6: plot_target_pred
def plot_target_pred(train_xdata, test_xdata, train_ydata, test_ydata, loc=5):
maxval = max(train_xdata.max(), test_xdata.max(), train_ydata.max(), test_ydata.max())
minval = min(train_xdata.min(), test_xdata.min(), train_ydata.min(), test_ydata.min())
fig, ax = plt.subplots()
ax.plot(train_xdata, train_ydata, '.', label="Train")
ax.plot(test_xdata, test_ydata, '.', label="Test")
plt.legend(loc="best")
ax.plot([minval, maxval], [minval, maxval], '--')
plt.xlabel("Target Value (kcal/mol)")
plt.ylabel("Predicted Value (kcal/mol)")
axins = zoomed_inset_axes(ax, 30, loc=loc) # 30 is zoom, loc is .... nuts
axins.plot(train_xdata, train_ydata, '.', label="Train")
axins.plot(test_xdata, test_ydata, '.', label="Test")
axins.plot([minval, maxval], [minval, maxval], '--')
# sub region of the original image
middle = test_xdata.mean() - 170
x1, x2, y1, y2 = -15+middle, 15+middle, -15+middle, 15+middle
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
mark_inset(ax, axins, loc1=2, loc2=3, fc="none", ec="0.5")
plt.draw()
plt.show()
示例7: plot_us
def plot_us(lats, lons, save_name=None):
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
big_map = Basemap(resolution='h',
lat_0=36, lon_0=-107.5,
llcrnrlat=32, llcrnrlon=-125,
urcrnrlat=43, urcrnrlon=-110)
big_map.drawcoastlines()
big_map.drawstates()
big_map.drawcountries()
big_map.drawmapboundary(fill_color='#7777ff')
big_map.fillcontinents(color='#ddaa66', lake_color='#7777ff', zorder=0)
x, y = big_map(lons, lats)
big_map.plot(x[0], y[0], 'ro', markersize=2)
axins = zoomed_inset_axes(ax, 20, loc=1)
ll_lat, ll_lon = 37.8, -122.78
ur_lat, ur_lon = 38.08, -122.43
axins.set_xlim(ll_lon, ur_lon)
axins.set_ylim(ur_lon, ur_lat)
small_map = Basemap(resolution='h',
llcrnrlat=ll_lat, llcrnrlon=ll_lon,
urcrnrlat=ur_lat, urcrnrlon=ur_lon,
ax=axins)
small_map.drawcoastlines()
small_map.drawmapboundary(fill_color='#7777ff')
small_map.fillcontinents(color='#ddaa66', lake_color='#7777ff', zorder=0)
x, y = small_map(lons, lats)
small_map.plot(x, y, 'ro', markersize=3)
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
if save_name:
fig.savefig(save_name)
示例8: render_input_spectrum
def render_input_spectrum():
folder = "/cosma/home/durham/rhgk18/ls_structure/pks"
bao = folder+"/wig.txt"
nbao = folder+"/nowig.txt"
pkbao = np.loadtxt(bao)
pknbao = np.loadtxt(nbao)
fig, ax = plt.subplots()
ax.loglog(pkbao[:,0] ,pkbao[:,1] , color='r', label='With BAO')
ax.loglog(pknbao[:,0] ,pknbao[:,1] , color='b', label='Without BAO')
ax.set_xlabel("Wavenumber, $k$ [$h/Mpc$]", size=28)
ax.set_ylabel("Power, $P(k)$ [$(Mpc/h)^3$]", size=28)
ax.legend(prop={'size':28})
axins = zoomed_inset_axes(ax, 5, loc=3)
axins.loglog(pkbao[:,0] ,pkbao[:,1] , color='r', label='iWith BAO')
axins.loglog(pknbao[:,0] ,pknbao[:,1] , color='b', label='iWithout BAO')
x1, x2, y1, y2 = 0.02, 0.1, 5000, 30000
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
mark_inset(ax, axins, loc1=2, loc2=1, fc="none", ec="0.5")
plt.show()
示例9: plotBinned
def plotBinned(cls_in,dcls_in,l_out,bins,output_prefix,title=None,theory=None,dtheory=None,delta=None,cosmic=None):
fig=plt.figure(1)
plt.clf()
ax=fig.add_subplot(111)
good_l=np.logical_and( l_out > 25 , l_out <= 250)
if not (theory is None) :
ax.plot(l_out,theory,'r-')
if not (cosmic is None) :
ax.fill_between(l_out,(theory-cosmic),(theory+cosmic),alpha=.5,facecolor='red')
#plt.fill_between(l_out,(theory-dtheory),(theory+dtheory),alpha=.5,facecolor='red')
if not (dtheory is None) :
ax.errorbar(l_out,theory,yerr=dtheory,color='red')
ax.errorbar(l_out,cls_in,yerr=dcls_in,color='black',fmt='k.',linestyle='None')
if not (delta is None) :
ax.fill_between(l_out,cls_in-delta,cls_in+delta,color='gray',alpha=0.5)
#plt.xlim([0,np.max(l_out+bins)])
#plt.ylim([np.min(b_cl['llcl']-b_dcl['llcl']),np.max(b_cl['llcl']+b_dcl['llcl'])])
ax.set_xlabel('$\ell$')
ax.set_ylabel('$\\frac{\ell(\ell+1)}{2\pi}C_{\ell}\ \\frac{\mu K^{2}}{m^{4}}$')
#ax.set_xlim([0,np.max(l_out+bins)])
# ax.autoscale(axis='y',tight=True)
if title:
ax.set_title(title)
else:
ax.set_title('Binned Cls {:02d}'.format(bins))
axins = inset_axes(ax,width="50%",height="30%",loc=9)
if not (theory is None) :
axins.plot(l_out[good_l],theory[good_l],'r-')
if not (cosmic is None) :
axins.fill_between(l_out[good_l],(theory-cosmic)[good_l],(theory+cosmic)[good_l],alpha=.5,facecolor='red')
#plt.fill_between(l_out,(theory-dtheory),(theory+dtheory),alpha=.5,facecolor='red')
if not (dtheory is None) :
axins.errorbar(l_out[good_l],theory[good_l],yerr=dtheory[good_l],color='red')
axins.errorbar(l_out[good_l],cls_in[good_l],yerr=dcls_in[good_l],color='black',fmt='k.',linestyle='None')
if not (delta is None) :
axins.fill_between(l_out[good_l],(cls_in-delta)[good_l],(cls_in+delta)[good_l],color='gray',alpha=0.5)
axins.set_xlim(25,255)
axins.set_yscale('log')
#axins.set_ylim(ymax=1e5)
#axins.set_ylim(-1e5,1e5)
mark_inset(ax,axins,loc1=2,loc2=4,fc='none',ec='0.1')
#axins.set_xlim([25,250])
axins.autoscale('y',tight=True)
plt.draw()
#plt.show(block=True)
fig.savefig(output_prefix+'_linear_{:02d}.eps'.format(bins),format='eps')
fig.savefig(output_prefix+'_linear_{:02d}.png'.format(bins),format='png')
ax.set_yscale('log')
fig.savefig(output_prefix+'_log_{:02d}.eps'.format(bins),format='eps')
fig.savefig(output_prefix+'_log_{:02d}.png'.format(bins),format='png')
示例10: plot_default_topo
def plot_default_topo(bmap,x, y, data):
assert isinstance(bmap, Basemap)
fig = plt.figure(figsize=(10, 6))
gs = GridSpec(1, 2, width_ratios=[4, 1], height_ratios=[3, 1])
ax = fig.add_subplot(gs[0, 1])
bmap.etopo()
img = bmap.contourf(x, y, data, norm=LogNorm(), alpha=0.8, ax=ax)
cb = bmap.colorbar(img)
cb.ax.set_title(r"${\rm km^2}$")
bmap.drawcoastlines(linewidth=0.3)
bmap.drawmeridians(np.arange(-180, 180, 20))
bmap.drawparallels(np.arange(-90, 110, 20))
bmap.readshapefile("data/shp/wri_basins2/wribasin", "basin", color="k", linewidth=2, ax=ax)
lower_left_lat_lon = (-50, 45)
axins = fig.add_subplot(gs[0, 0]) # plt.axes([-0.15, 0.1, 0.6, 0.8]) # zoomed_inset_axes(ax, 2, loc=1) # zoom = 6
#bmap.etopo(ax=axins)
bm_zoom = plot_changes_in_seasonal_means.get_arctic_basemap_nps(round=False, resolution="l")
lower_left_xy = bmap(*lower_left_lat_lon)
upper_right_xy = bmap(-160, 55)
bm_zoom.etopo(ax=axins)
#axins.set_xlim(lower_left_xy[0], lower_left_xy[0] + 400000)
#axins.set_ylim(lower_left_xy[1], lower_left_xy[1] + 5000000)
print(lower_left_xy)
print(upper_right_xy)
#bm_zoom.etopo(ax=axins)
assert isinstance(axins, Axes)
img = bm_zoom.contourf(x, y, data, norm=LogNorm(), alpha=0.8, ax=axins)
bm_zoom.drawcoastlines(linewidth=0.3)
bm_zoom.readshapefile("data/shp/wri_basins2/wribasin", "basin", color="k", linewidth=2, ax=axins)
axins.set_xlim(lower_left_xy[0], upper_right_xy[0])
axins.set_ylim(lower_left_xy[1], upper_right_xy[1])
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=1, loc2=4, fc="none", ec="0.5")
fig.tight_layout()
fig.savefig("simple2.png", bbox_inches="tight")
plt.show()
示例11: test_gettightbbox
def test_gettightbbox():
fig, ax = plt.subplots(figsize=(8, 6))
l, = ax.plot([1, 2, 3], [0, 1, 0])
ax_zoom = zoomed_inset_axes(ax, 4)
ax_zoom.plot([1, 2, 3], [0, 1, 0])
mark_inset(ax, ax_zoom, loc1=1, loc2=3, fc="none", ec='0.3')
remove_ticks_and_titles(fig)
bbox = fig.get_tightbbox(fig.canvas.get_renderer())
np.testing.assert_array_almost_equal(bbox.extents,
[-17.7, -13.9, 7.2, 5.4])
示例12: makeplot
def makeplot(refl, winds, w, stride, map, gs, title, file_name, box=None):
pylab.figure()
axmain = pylab.axes((0, 0.025, 1, 0.9))
gs_x, gs_y = gs
nx, ny = refl.shape
xs, ys = np.meshgrid(gs_x * np.arange(nx), gs_y * np.arange(ny))
pylab.contourf(xs, ys, refl, levels=np.arange(10, 80, 10))
pylab.colorbar()
pylab.contour(xs, ys, w, levels=np.arange(-10, 0, 2), colors='#666666', style='--')
pylab.contour(xs, ys, w, levels=np.arange(2, 12, 2), colors='#666666', style='-')
u, v = winds
wind_slice = tuple([ slice(None, None, stride) ] * 2)
pylab.quiver(xs[wind_slice], ys[wind_slice], u[wind_slice], v[wind_slice])
if box:
lb_y, lb_x = [ b.start for b in box ]
ub_y, ub_x = [ b.stop for b in box ]
box_xs = gs_x * np.array([ lb_x, lb_x, ub_x, ub_x, lb_x])
box_ys = gs_y * np.array([ lb_y, ub_y, ub_y, lb_y, lb_y])
map.plot(box_xs, box_ys, '#660099')
axins = zoomed_inset_axes(pylab.gca(), 4, loc=4)
pylab.sca(axins)
pylab.contourf(xs[box], ys[box], refl[box], levels=np.arange(10, 80, 10))
pylab.contour(xs[box], ys[box], w[box], levels=np.arange(-10, 0, 2), colors='#666666', style='--')
pylab.contour(xs[box], ys[box], w[box], levels=np.arange(2, 12, 2), colors='#666666', style='-')
pylab.quiver(xs[box], ys[box], u[box], v[box])
drawPolitical(map)
pylab.xlim([lb_x * gs_x, ub_x * gs_x - 1])
pylab.ylim([lb_y * gs_y, ub_y * gs_y - 1])
mark_inset(axmain, axins, loc1=1, loc2=3, fc='none', ec='k')
pylab.sca(axmain)
drawPolitical(map)
pylab.suptitle(title)
pylab.savefig(file_name)
pylab.close()
return
示例13: test_inset_axes
def test_inset_axes():
def get_demo_image():
from matplotlib.cbook import get_sample_data
import numpy as np
f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False)
z = np.load(f)
# z is a numpy array of 15x15
return z, (-3, 4, -4, 3)
fig, ax = plt.subplots(figsize=[5, 4])
# prepare the demo image
Z, extent = get_demo_image()
Z2 = np.zeros([150, 150], dtype="d")
ny, nx = Z.shape
Z2[30:30 + ny, 30:30 + nx] = Z
# extent = [-3, 4, -4, 3]
ax.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
# creating our inset axes with a bbox_transform parameter
axins = inset_axes(ax, width=1., height=1., bbox_to_anchor=(1, 1),
bbox_transform=ax.transAxes)
axins.imshow(Z2, extent=extent, interpolation="nearest",
origin="lower")
axins.yaxis.get_major_locator().set_params(nbins=7)
axins.xaxis.get_major_locator().set_params(nbins=7)
# sub region of the original image
x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
asb = AnchoredSizeBar(ax.transData,
0.5,
'0.5',
loc='lower center',
pad=0.1, borderpad=0.5, sep=5,
frameon=False)
ax.add_artist(asb)
示例14: plotConfusion
def plotConfusion(confusion, grid, title, file_name, inset=None, fudge=16):
pylab.figure()
axmain = pylab.axes()
tick_labels = [ "Missing", "Correct\nNegative", "False\nAlarm", "Miss", "Hit" ]
min_label = -1
xs, ys = grid.getXY()
pylab.pcolormesh(xs, ys, confusion, cmap=confusion_cmap, vmin=min_label, vmax=(min_label + len(tick_labels) - 1))
tick_locs = np.linspace(-1, min_label + len(tick_labels) - 2, len(tick_labels))
tick_locs += (tick_locs[1] - tick_locs[0]) / 2
bar = pylab.colorbar()
bar.locator = FixedLocator(tick_locs)
bar.formatter = FixedFormatter(tick_labels)
pylab.setp(pylab.getp(bar.ax, 'ymajorticklabels'), fontsize='large')
bar.update_ticks()
grid.drawPolitical()
if inset:
lb_y, lb_x = [ b.start for b in inset ]
ub_y, ub_x = [ b.stop + fudge for b in inset ]
inset_exp = (slice(lb_y, ub_y), slice(lb_x, ub_x))
axins = zoomed_inset_axes(pylab.gca(), 2, loc=4)
pylab.sca(axins)
pylab.pcolormesh(xs[inset_exp], ys[inset_exp], confusion[inset_exp], cmap=confusion_cmap, vmin=min_label, vmax=(min_label + len(tick_labels) - 1))
grid.drawPolitical()
gs_x, gs_y = grid.getGridSpacing()
pylab.xlim([lb_x * gs_x, (ub_x - 1) * gs_x])
pylab.ylim([lb_y * gs_y, (ub_y - 1) * gs_y])
mark_inset(axmain, axins, loc1=1, loc2=3, fc='none', ec='k')
pylab.sca(axmain)
pylab.suptitle(title)
pylab.savefig(file_name)
pylab.close()
return
示例15: draw_inset
def draw_inset(plt, m, pos, lat, lon):
ax = plt.subplot(111)
zoom = 50
axins = zoomed_inset_axes(ax, zoom, loc=1)
m.plot(lon, lat, '.b--', zorder=10, latlon=True)
m.scatter(lon, lat, # longitude first!
latlon=True, # lat and long in degrees
zorder=11) # on top of all
x1, y1 = m(lon[1] - 0.005, lat[0] - 0.0025)
x2, y2 = m(lon[1] + 0.005, lat[0] + 0.0025)
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
plt.xticks(visible=False)
plt.yticks(visible=False)
# draw a bbox of the region of the inset axes in the parent axes and
# connecting lines between the bbox and the inset axes area
mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")