本文整理汇总了Python中mpl_toolkits.axes_grid1.make_axes_locatable函数的典型用法代码示例。如果您正苦于以下问题:Python make_axes_locatable函数的具体用法?Python make_axes_locatable怎么用?Python make_axes_locatable使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了make_axes_locatable函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: print_matrix
def print_matrix(row, col, row_label, col_label, matrix_1, matrix_2, number, same_row_col):
f, ax = plt.subplots(2, sharex = True)
ax[0] = plt.subplot2grid((2,2), (0,0), colspan = 2)
ax[1] = plt.subplot2grid((2,2), (1,0), colspan = 2)
# Assigns color according to values in fitness_heat arrays
norm = MidpointNormalize(midpoint=0)
#im1 = ax[0].imshow(matrix_1, cmap=plt.cm.seismic, interpolation='none')
im1 = ax[0].imshow(matrix_1, norm=norm, cmap=plt.cm.seismic, interpolation='none')
divider1 = make_axes_locatable(ax[0])
cax1 = divider1.append_axes("right", size="2%", pad=0.05)
im2 = ax[1].imshow(matrix_2, cmap=plt.cm.seismic, interpolation='none')
#im2 = ax[1].imshow(matrix_2, norm=norm, cmap=plt.cm.seismic, interpolation='none')
divider2 = make_axes_locatable(ax[1])
cax2 = divider2.append_axes("right", size="2%", pad=0.05)
# Sorting out labels for y-axis in correct order and placing in new list 'yax'
yax1 = sorted(number.items(), key=lambda (k, v): v)
yax = []
for item in yax1:
if item[0] =='STOP':
yax.append ('*')
else:
yax.append (item[0])
if same_row_col == True:
xax = yax
x = np.arange(0, row+0.5, 1)
ax[0].set_xticks(x)
ax[0].set_xticklabels(xax, rotation='horizontal', fontsize = 10)
ax[0].set_xlabel(row_label)
ax[1].set_xticks(x)
ax[1].set_xticklabels(xax, rotation='horizontal', fontsize = 10)
ax[1].set_xlabel(row_label)
else:
x = np.arange(0.5, col+0.5, 5)
xlab = np.arange(1, col, 5)
plt.xticks(x, xlab, rotation='horizontal')
ax[1].set_xlabel(col_label)
# Setting up y-axis ticks...want AA labels, centered
y = np.arange(0, row, 1)
ax[0].set_yticks(y)
ax[0].set_yticklabels(yax, rotation='horizontal', fontsize = 10)
ax[0].set_ylabel(row_label)
ax[1].set_yticks(y)
ax[1].set_yticklabels(yax, rotation='horizontal', fontsize = 10)
ax[1].set_ylabel(row_label)
# Setting up x-axis ticks...want residue number, centered
# Limit axes to appropriate values
plt.axis([0, col, 0, row])
plt.colorbar(im1, cax = cax1)
plt.colorbar(im2, cax = cax2)
plt.show()
示例2: display_data
def display_data(data):
from mpl_toolkits.axes_grid1 import make_axes_locatable
fig, (trans_ax, f_1_ax, f_2_ax) = plt.subplots(ncols=1, nrows=3, sharex=True, constrained_layout=True, figsize=(6, 4))
trans_im = trans_ax.imshow(data.trans, extent=data.extent)
trans_divider = make_axes_locatable(trans_ax)
trans_ax_cb = trans_divider.new_horizontal(size="3%", pad=0.05)
trans_fig = trans_ax.get_figure()
trans_fig.add_axes(trans_ax_cb)
trans_cb = plt.colorbar(trans_im, cax=trans_ax_cb)
trans_cb.ax.set_ylabel(r'$P_{trans}$', rotation=0, labelpad=25, size=15)
f_1_im = f_1_ax.imshow(data.f_1.T, extent=data.extent)
f_1_divider = make_axes_locatable(f_1_ax)
f_1_ax_cb = f_1_divider.new_horizontal(size="3%", pad=0.05)
f_1_fig = f_1_ax.get_figure()
f_1_fig.add_axes(f_1_ax_cb)
f_1_cb = plt.colorbar(f_1_im, cax=f_1_ax_cb)
f_1_cb.ax.set_ylabel(r'$P_{f1}$', rotation=0, labelpad=15, size=15)
f_2_im = f_2_ax.imshow(data.f_2.T, extent=data.extent)
f_2_divider = make_axes_locatable(f_2_ax)
f_2_ax_cb = f_2_divider.new_horizontal(size="3%", pad=0.05)
f_2_fig = f_2_ax.get_figure()
f_2_fig.add_axes(f_2_ax_cb)
f_2_cb = plt.colorbar(f_2_im, cax=f_2_ax_cb)
f_2_cb.ax.set_ylabel(r'$P_{f2}$', rotation=0, labelpad=13, size=15)
f_1_ax.set_ylabel(r'Neutron Angle $\phi$ (rad)')
f_2_ax.set_xlabel(r'Detector Angle $\theta$ (rad)')
fig.suptitle('Data Sinograms')
plt.subplots_adjust(top=0.92, bottom=0.125, left=0.100, right=0.9, hspace=0.2, wspace=0.2)
示例3: plot_thsections
def plot_thsections(dbz,vvel,ht,dayt,**kwargs):
fig,ax = plt.subplots(2,1,sharex=True)
'colormap for vvel'
orig_cmap = cm.bwr
shifted_cmap = shiftedColorMap(orig_cmap, midpoint=0.7, name='shifted')
' add images and colorbar'
im0=ax[0].imshow(dbz,interpolation='none',cmap='nipy_spectral',vmin=-20,vmax=60,aspect='auto',origin='lower')
im1=ax[1].imshow(vvel,interpolation='none',cmap=shifted_cmap,vmin=-10,vmax=4,aspect='auto',origin='lower')
divider0 = make_axes_locatable(ax[0])
cax0 = divider0.append_axes("right", size="2%", pad=0.05)
cbar0 = plt.colorbar(im0, cax=cax0)
divider1 = make_axes_locatable(ax[1])
cax1 = divider1.append_axes("right", size="2%", pad=0.05)
cbar1 = plt.colorbar(im1, cax=cax1)
if 'echotop' in kwargs:
echot=kwargs['echotop']
ax[0].plot(echot,color='k')
format_yaxis(ax[0],ht)
format_yaxis(ax[1],ht)
format_xaxis(ax[1], dayt, minutes_tick=30, labels=True)
ax[1].invert_xaxis()
ax[0].set_ylabel('Hgt MSL [km]')
ax[1].set_ylabel('Hgt MSL [km]')
ax[1].set_xlabel(r'$\Leftarrow$'+' Time [UTC]')
plt.subplots_adjust(hspace=0.05)
plt.suptitle('SPROF observations. Date: '+dayt[0].strftime('%Y-%b'))
plt.draw()
示例4: display_images
def display_images(mu_im, mu_f_im, p_im, title='Images'):
from mpl_toolkits.axes_grid1 import make_axes_locatable
fig, (mu_ax, mu_f_ax, p_ax) = plt.subplots(ncols=1, nrows=3, sharex=True, constrained_layout=True, figsize=(5, 6))
mu_im = mu_ax.imshow(mu_im.data, extent=mu_im.extent)
mu_divider = make_axes_locatable(mu_ax)
mu_ax_cb = mu_divider.new_horizontal(size="5%", pad=0.05)
mu_fig = mu_ax.get_figure()
mu_fig.add_axes(mu_ax_cb)
mu_cb = plt.colorbar(mu_im, cax=mu_ax_cb)
mu_cb.ax.set_ylabel(r'$\mu$', rotation=0, labelpad=10, size=15)
mu_f_im = mu_f_ax.imshow(mu_f_im.data, extent=mu_f_im.extent)
mu_f_divider = make_axes_locatable(mu_f_ax)
mu_f_ax_cb = mu_f_divider.new_horizontal(size="5%", pad=0.05)
mu_f_fig = mu_f_ax.get_figure()
mu_f_fig.add_axes(mu_f_ax_cb)
mu_f_cb = plt.colorbar(mu_f_im, cax=mu_f_ax_cb)
mu_f_cb.ax.set_ylabel(r'$\frac{\mu_f}{\mu}$', rotation=0, labelpad=10, size=15)
p_im = p_ax.imshow(p_im.data, extent=p_im.extent)
p_divider = make_axes_locatable(p_ax)
p_ax_cb = p_divider.new_horizontal(size="5%", pad=0.05)
p_fig = p_ax.get_figure()
p_fig.add_axes(p_ax_cb)
p_cb = plt.colorbar(p_im, cax=p_ax_cb)
p_cb.ax.set_ylabel(r'$p$', rotation=0, labelpad=10, size=15)
mu_f_ax.set_ylabel('Y (cm)')
p_ax.set_xlabel('X (cm)')
fig.suptitle(title)
plt.show()
示例5: test_extendednorm
def test_extendednorm():
a = np.zeros((4, 5))
a[0,0] = -9999
a[1,1] = 1.1
a[2,2] = 2.2
a[2,4] = 1.9
a[3,3] = 9999999
cm = mpl.cm.get_cmap('jet')
bounds = [0,1,2,3]
norm = cleo.colors.ExtendedNorm(bounds, cm.N, extend='both')
#fig, (ax1, ax2) = plt.subplots(1, 2)
fig = plt.figure()
ax1 = fig.add_subplot(1, 2, 1)
ax2 = fig.add_subplot(1, 2, 2)
imax = ax1.imshow(a, interpolation='None', norm=norm, cmap=cm,
origin='lower');
divider = make_axes_locatable(ax1)
cax = divider.append_axes("right", size="5%", pad=0.2)
plt.colorbar(imax, cax=cax, extend='both')
ti = cm(norm(a))
ax2.imshow(ti, interpolation='None', origin='lower')
divider = make_axes_locatable(ax2)
cax = divider.append_axes("right", size="5%", pad=0.2)
cbar = mpl.colorbar.ColorbarBase(cax, extend='both', cmap=cm,
norm=norm)
fig.tight_layout()
示例6: show
def show(self):
nclasses = len(self._landclass)
gs=plt.GridSpec(nclasses, 2)
row = 0
fig=plt.figure()
for c in self._landclass:
ax=fig.add_subplot(gs[row,0], title=c)
im=ax.imshow(self._landclass[c].get_raster())
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", "5%", pad="3%")
cb=fig.colorbar(im,cax=cax)
ax=fig.add_subplot(gs[row,1],title='Classified '+c)
im=ax.imshow(self._landclass[c].get_classraster())
divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", "5%", pad="3%")
cb=fig.colorbar(im,cax=cax)
cb.set_ticks( list(range(1,self._landclass[c].get_nclasses()+1)))
cb.set_ticklabels(self._landclass[c].get_classes_str())
row +=1
fig.tight_layout()
示例7: plot_residuals
def plot_residuals(directory):
residuals = []
for directory in _get_cc_dirs(directory):
residual_file = directory + os.sep + 'results/residuals.dat'
residuals.append(np.loadtxt(residual_file))
all_residuals = np.array(residuals)
nr_f = all_residuals.shape[1] / 2
fig, axes = plt.subplots(1, 2, figsize=(6, 2.5))
ax = axes[0]
im = ax.imshow(all_residuals[:, 0:nr_f], interpolation='none')
divider = make_axes_locatable(ax)
ax_cb = divider.new_horizontal(size="5%", pad=0.05)
fig.add_axes(ax_cb)
fig.colorbar(im, cax=ax_cb)
ax.set_xlabel('frequency')
ax.set_title(r'Magnitude $\Delta(log(R))$')
ax = axes[1]
im = ax.imshow(all_residuals[:, nr_f:], interpolation='none')
divider = make_axes_locatable(ax)
ax_cb = divider.new_horizontal(size="5%", pad=0.05)
fig.add_axes(ax_cb)
fig.colorbar(im, cax=ax_cb)
ax.set_xlabel('frequency')
ax.set_title(r'Phase $\Delta \phi$')
fig.tight_layout()
fig.savefig('residuals.png', dpi=300)
示例8: createColorbar
def createColorbar(patches, cMin=None, cMax=None, nLevs=5,
label=None, orientation='horizontal', *args, **kwargs):
cbarTarget = plt
cax = None
divider = None
#if hasattr(patches, 'figure'):
#cbarTarget = patches.figure
#print( patches)
if hasattr(patches, 'ax'):
divider = make_axes_locatable(patches.ax)
elif hasattr(patches, 'get_axes'):
divider = make_axes_locatable(patches.get_axes())
if divider:
if orientation == 'horizontal':
cax = divider.append_axes("bottom", size=0.25, pad=0.65)
else:
cax = divider.append_axes("right", size=0.25, pad=0.05)
#cax = divider.append_axes("right", size="5%", pad=0.05)
#cbar3 = plt.colorbar(im3, cax=cax3)
#print(patches, cax)
cbar = cbarTarget.colorbar(patches, cax=cax,
orientation=orientation)
setCbarLevels(cbar, cMin, cMax, nLevs)
if label is not None:
cbar.set_label(label)
return cbar
示例9: compare
def compare(data, model, res, chi, filename):
head = np.percentile(data, 99.9)
toe = np.percentile(data, 0.1)
chirange = 5. # head*0.05 # np.percentile(data, 9.3)
resrange = (head-toe)*0.5 # np.percentile(data, 50.0)
width, height = np.shape(data)
figw, figh = (width/dippy)*2., (height/dippy)*2.
fig = plt.figure(figsize=(figw, figh))
# fig = plt.figure(dpi=dippy, figsize=(figw, figh))
gs = gridspec.GridSpec(2, 2)
# axr = fig.add_subplot(221)
axr = plt.subplot(gs[0])
axr.set_axis_off()
axr.set_title(r"Data", fontsize=40)
caxr = axr.imshow(data, cmap=plt.cm.gray, vmin=toe, vmax=head)
divr = make_axes_locatable(plt.gca())
cbarr = divr.append_axes("right", "5%", pad="3%")
fig.colorbar(caxr, cax=cbarr)
# axf = fig.add_subplot(222)
axf = plt.subplot(gs[1])
axf.set_axis_off()
axf.set_title(r"Model Image", fontsize=40)
caxf = axf.imshow(model, cmap=plt.cm.gray, vmin=toe, vmax=head)
divf = make_axes_locatable(plt.gca())
cbarf = divf.append_axes("right", "5%", pad="3%")
fig.colorbar(caxf, cax=cbarf)
# axres = fig.add_subplot(223)
axres = plt.subplot(gs[2])
axres.set_axis_off()
axres.set_title(r"Residual Image",fontsize=40)
caxres = axres.imshow(res, cmap=plt.cm.gray, vmin=-resrange, vmax=resrange)
divres = make_axes_locatable(plt.gca())
cbarres = divres.append_axes("right", "5%", pad="3%")
fig.colorbar(caxres, cax=cbarres)
# axchi = fig.add_subplot(224)
axchi = plt.subplot(gs[3])
axchi.set_axis_off()
axchi.set_title(r"Chi Image", fontsize=40)
caxchi = axchi.imshow(chi, cmap=plt.cm.gray, vmin=-chirange, vmax=chirange)
divchi = make_axes_locatable(plt.gca())
cbarchi = divchi.append_axes("right", "5%", pad="3%")
fig.colorbar(caxchi, cax=cbarchi)
# fig.subplots_adjust(hspace=0.001)
fig.tight_layout()
# fig.savefig(filename, dpi=60., bbox_inches='tight')
fig.savefig(filename)
示例10: compare_to_model
def compare_to_model(srcs, img, fig=None, axarr=None):
""" plots true image, model image, and difference (much like above)
Input:
srcs: python list of PointSrcParams
img : FitsImage object
Output:
fig, axarr
"""
if fig is None or axarr is None:
fig, axarr = plt.subplots(1, 3)
# generate model image
model_img = gen_model_image(srcs, img)
vmin = min(img.nelec.min(), model_img.min())
vmax = max(img.nelec.max(), model_img.max())
im1 = axarr[0].imshow(np.log(img.nelec), interpolation='none', origin='lower', vmin=np.log(vmin), vmax=np.log(vmax))
axarr[0].set_title('log data ($\log(x_{n,m})$')
im2 = axarr[1].imshow(np.log(model_img), interpolation='none', origin='lower', vmin=np.log(vmin), vmax=np.log(vmax))
axarr[1].set_title('log model ($\log(F_{n,m})$)')
divider2 = make_axes_locatable(axarr[1])
cax2 = divider2.append_axes('right', size='10%', pad=.05)
cbar2 = fig.colorbar(im2, cax=cax2)
im3 = axarr[2].imshow(img.nelec-model_img, interpolation='none', origin='lower')
axarr[2].set_title('Difference: Data - Model')
divider3 = make_axes_locatable(axarr[2])
cax3 = divider3.append_axes('right', size='10%', pad=.05)
cbar3 = fig.colorbar(im3, cax=cax3)
return fig, axarr
示例11: plotarray
def plotarray(zonearray,Z,dirname,runid):
"""
Plots HY properties
"""
assert(len(Z.shape)==2)
assert(len(zonearray.shape)==2)
fig =plt.figure(figsize=(11,8.5))
fig.subplots_adjust(hspace=0.45, wspace=0.3)
"""Compute the log of HY """
nrows,ncols=Z.shape
logZ =np.log10(Z)
logZ1d=np.reshape(logZ, (nrows*ncols,))
"""Histogram of log HY """
ax3=fig.add_subplot(2,1,1)
mybins=np.arange(-3.0,4.0,0.333333)
ax3.hist(logZ1d, bins=mybins, normed=0, facecolor='green', alpha=0.75)
ax3.set_xlabel('Log10 HY')
ax3.set_ylabel('Frequency')
ax3.set_ylim(0,30000)
ax3.grid(True)
"""Plot of HY Zone Array """
ax1=fig.add_subplot(2,2,3)
im1 =ax1.imshow(zonearray,interpolation='bilinear')
"""
create an axes on the right side of ax1. The width of cax will be 5%
of ax and the padding between cax1 and ax1 will be fixed at 0.05 inch.
"""
divider= make_axes_locatable(ax1)
cax1=divider.append_axes("right",size="5%",pad=0.05)
cbar1=plt.colorbar(im1, cax=cax1,ticks=[0,1])
cbar1.ax.set_yticklabels(['Low','High']) #Vertically Oriented Colorbar
ax1.set_title('HYZones'+"{0:04d}".format(runid))
"""Plot of HY Array"""
ax =fig.add_subplot(2,2,4)
im =ax.imshow(logZ,interpolation='bilinear',vmin=-2,vmax=2)
"""
create an axes on the right side of ax. The width of cax will be 5%
of ax and the padding between cax and ax will be fixed at 0.05 inch.
"""
divider= make_axes_locatable(ax)
cax=divider.append_axes("right",size="5%",pad=0.05)
#Add colorbar, make sure to specify tick locations to match desired ticklabels
cbar=plt.colorbar(im, cax=cax,ticks=[-2,-1,0,1,2])
cbar.ax.set_yticklabels(['0.01','0.1','1','10','>100']) #Vertically Oriented Colorbar
ax.set_title('HYField'+"{0:04d}".format(runid))
"""Save the figure """
fout =dirname +"/HY" + "{0:04d}".format(runid)+".png"
plt.tight_layout()
plt.savefig(fout)
plt.clf()
示例12: plot_class
def plot_class(dist_m, shape_port, dat_port, dat_star, dat_class, ft, humfile, sonpath, base, p):
if len(shape_port)>2:
Zdist = dist_m[shape_port[-1]*p:shape_port[-1]*(p+1)]
extent = shape_port[1]
else:
Zdist = dist_m
extent = shape_port[0]
print("Plotting ... ")
# create fig 1
fig = plt.figure()
fig.subplots_adjust(wspace = 0, hspace=0.075)
plt.subplot(2,1,1)
ax = plt.gca()
im = ax.imshow(np.vstack((np.flipud(dat_port),dat_star)),cmap='gray',
extent=[min(Zdist), max(Zdist), -extent*(1/ft), extent*(1/ft)],origin='upper')
plt.ylabel('Horizontal distance (m)');
plt.axis('tight')
plt.tick_params(\
axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom='off', # ticks along the bottom edge are off
labelbottom='off') # labels along the bottom edge are off
try:
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax)
except:
plt.colorbar()
plt.subplot(2,1,2)
ax = plt.gca()
plt.imshow(np.vstack((np.flipud(dat_port), dat_star)),cmap='gray',
extent=[min(Zdist), max(Zdist), -extent*(1/ft), extent*(1/ft)],origin='upper')
im = ax.imshow(dat_class, alpha=0.5,extent=[min(Zdist), max(Zdist), -extent*(1/ft), extent*(1/ft)],
origin='upper', cmap='YlOrRd', vmin=0, vmax=3)
plt.ylabel('Horizontal distance (m)');
plt.xlabel('Distance along track (m)')
plt.axis('tight')
try:
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax, extend='max')
except:
plt.colorbar(extend='max')
if len(shape_port)>2:
custom_save(sonpath,base+'class'+str(p))
else:
custom_save(sonpath,base+'class')
del fig
示例13: plot_surface
def plot_surface(self, save_name=None, show_bicoh=True,
cmap='viridis', contour_color='k'):
'''
Plot the bispectrum amplitude and (optionally) the bicoherence.
Parameters
----------
save_name : str, optional
Save name for the figure. Enables saving the plot.
show_bicoh : bool, optional
Plot the bicoherence surface. Enabled by default.
cmap : {str, matplotlib color map}, optional
Colormap to use in the plots. Default is viridis.
contour_color : {str, RGB tuple}, optional
Color of the amplitude contours.
'''
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
if show_bicoh:
ax1 = plt.subplot(1, 2, 1)
else:
ax1 = plt.subplot(1, 1, 1)
im1 = ax1.imshow(self.bispectrum_logamp, origin="lower",
interpolation="nearest", cmap=cmap)
divider = make_axes_locatable(ax1)
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar1 = plt.colorbar(im1, cax=cax)
cbar1.set_label(r"log$_{10}$ Bispectrum Amplitude")
ax1.contour(self.bispectrum_logamp,
colors=contour_color)
ax1.set_xlabel(r"$k_1$")
ax1.set_ylabel(r"$k_2$")
if show_bicoh:
ax2 = plt.subplot(1, 2, 2)
im2 = ax2.imshow(self.bicoherence, origin="lower",
interpolation="nearest",
cmap=cmap)
divider = make_axes_locatable(ax2)
cax2 = divider.append_axes("right", size="5%", pad=0.05)
cbar2 = plt.colorbar(im2, cax=cax2)
cbar2.set_label("Bicoherence")
ax2.set_xlabel(r"$k_1$")
ax2.set_ylabel(r"$k_2$")
plt.tight_layout()
if save_name is not None:
plt.savefig(save_name)
plt.close()
else:
plt.show()
示例14: make_axr
def make_axr(ax, overlaycolor='darkred', size='23%'):
axr = ax.twinx()
div = make_axes_locatable(axr)
div.append_axes('right', size=size, add_to_figure=False)
ax.spines['right'].set_color(overlaycolor)
axr.tick_params(axis='y', colors=overlaycolor)
axr.yaxis.label.set_color(overlaycolor)
axr.yaxis.get_offset_text().set_color(overlaycolor)
div = make_axes_locatable(ax)
div.append_axes('right', size=size, add_to_figure=False)
return axr
示例15: __init__
def __init__(self, current_surf_dem, glacier_mask, bed_dem, date, \
output_trace_files, temp_files_path, glacier_thickness_threshold):
self.output_trace_files = output_trace_files
self.temp_files_path = temp_files_path
self.glacier_thickness_threshold = glacier_thickness_threshold
self.fig = plt.figure(figsize=(16,12))
self.surf_dem_plot_title = 'Surface DEM ' + date
self.sub1 = self.fig.add_subplot(131)
self.sub1.set_title(self.surf_dem_plot_title)
self.sub1.set_xticks([])
self.sub1.set_yticks([])
self.sub1.get_axes().set_frame_on(True)
self.img1 = self.sub1.imshow(current_surf_dem)
self.sub1.invert_yaxis() # makes North up
self.divider1 = make_axes_locatable(plt.gca())
self.cax1 = self.divider1.append_axes("right", size="5%", pad=0.05)
plt.colorbar(self.img1, cax=self.cax1)
self.glacier_mask_plot_title = 'Glacier Mask ' + date
self.sub2 = self.fig.add_subplot(132)
self.sub2.set_title(self.glacier_mask_plot_title)
self.sub2.set_xticks([])
self.sub2.set_yticks([])
self.sub2.get_axes().set_frame_on(True)
self.img2 = self.sub2.imshow(glacier_mask)
self.sub2.invert_yaxis()
self.divider2 = make_axes_locatable(plt.gca())
self.cax2 = self.divider2.append_axes("right", size="5%", pad=0.05)
plt.colorbar(self.img2, cax=self.cax2)
self.glacier_thickness_plot_title = 'Glacier Thickness ' + date
self.sub3 = self.fig.add_subplot(133)
self.sub3.set_title(self.glacier_thickness_plot_title)
self.sub3.set_xticks([])
self.sub3.set_yticks([])
self.sub3.get_axes().set_frame_on(True)
self.img3 = self.sub3.imshow( \
current_surf_dem - glacier_thickness_threshold - bed_dem)
self.sub3.invert_yaxis()
self.divider3 = make_axes_locatable(plt.gca())
self.cax3 = self.divider3.append_axes("right", size="5%", pad=0.05)
plt.colorbar(self.img3, cax=self.cax3)
self.fig.tight_layout()
plt.show(block=False)
if self.output_trace_files:
self.fig.savefig(temp_files_path + 'dem_+_glacier_mask_+_thickness_' + \
date, dpi=self.fig.dpi)