本文整理汇总了Python中mpfit.mpfit函数的典型用法代码示例。如果您正苦于以下问题:Python mpfit函数的具体用法?Python mpfit怎么用?Python mpfit使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了mpfit函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: do_mpfit
def do_mpfit(x,y,covarin,guess,functname=thepolynomial):
# check if covariance or error bars were given
covar=covarin
if np.size(np.shape(covarin)) == 1:
err=covarin
print('err')
#Prepare arguments for mpfit
fa={'x':double(x),'y':double(y),'err':double(err),'functname':functname}
costfct=fdeviates
else:
print('covar')
#Fist do a SVD decomposition
u,s,v=np.linalg.svd(covarin)
#Prepare arguments for mpfit
fa={'x':double(x),'y':double(y),'svdvals':double(s),'v':double(v),'functname':functname}
costfct=chi2svd
#Run MPFIT
mpf = mpfit.mpfit(costfct, guess, functkw=fa, autoderivative=1)
print('Status of the Fit',mpf.status)
print('Chi2=',mpf.fnorm)
print('ndf=',mpf.dof)
print('Fitted params:',mpf.params)
return(mpf,mpf.params,mpf.perror,mpf.covar)
示例2: test_quadfit
def test_quadfit():
x = N.array([-1.7237128E+00,1.8712276E+00,-9.6608055E-01,
-2.8394297E-01,1.3416969E+00,1.3757038E+00,
-1.3703436E+00,4.2581975E-02,-1.4970151E-01,
8.2065094E-01])
y = N.array([2.3095947E+01,2.6449392E+01,1.0204468E+01,
5.40507,1.5787588E+01,1.6520903E+01,
1.5971818E+01,4.7668524E+00,4.9337711E+00,
8.7348375E+00])
ey=0.2*N.ones(y.shape,dtype='float64')
p0=N.array([1.0,1.0,1.0],dtype='float64') #initial conditions
pactual=N.array([4.7, 0.0, 6.2]) #actual values used to make data
parbase={'value':0., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]}
parinfo=[]
for i in range(len(pactual)):
parinfo.append(copy.deepcopy(parbase))
parinfo[i]['value'] = p0[i]
fa = {'x': x, 'y': y, 'err': ey}
m = mpfit(myfunctquad, p0, parinfo = parinfo, functkw = fa)
if (m.status <= 0):
print 'status = ', m.status
print m.perror
assert N.allclose(m.params, N.array([ 4.703829, 0.062586, 6.163087], dtype='float64'))
assert N.allclose(m.perror, N.array([ 0.097512, 0.054802, 0.054433], dtype='float64'))
chisq = (myfunctquad(m.params, x=x, y=y, err=ey)[1]**2).sum()
assert N.allclose(N.array([chisq], dtype='float64'), N.array([5.679323], dtype='float64'))
assert m.dof == 7
return
示例3: test_gaussfit_fixed
def test_gaussfit_fixed():
x = N.array([-1.7237128E+00,1.8712276E+00,-9.6608055E-01,
-2.8394297E-01,1.3416969E+00,1.3757038E+00,
-1.3703436E+00,4.2581975E-02,-1.4970151E-01,
8.2065094E-01])
y = N.array([-4.4494256E-02,8.7324673E-01,7.4443483E-01,
4.7631559E+00,1.7187297E-01,1.1639182E-01,
1.5646480E+00,5.2322268E+00,4.2543168E+00,
6.2792623E-01])
ey=0.5*N.ones(y.shape,dtype='float64')
p0=N.array([0.0, 1.0, 0.0, 0.1],dtype='float64') #initial conditions
pactual=N.array([0.0, 4.70, 0.0, 0.5]) #actual values used to make data
parbase={'value':0., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]}
parinfo=[]
for i in range(len(pactual)):
parinfo.append(copy.deepcopy(parbase))
parinfo[i]['value'] = p0[i]
parinfo[0]['fixed'] = 1
parinfo[2]['fixed'] = 1
fa = {'x': x, 'y': y, 'err': ey}
m = mpfit(myfunctgauss, p0, parinfo = parinfo, functkw = fa)
if (m.status <= 0):
print 'status = ', m.status
assert N.allclose(m.params, N.array([ 0., 5.059244, 0., 0.479746 ], dtype='float64'))
assert N.allclose(m.perror, N.array([ 0., 0.329307, 0., 0.053804 ], dtype='float64'))
chisq = (myfunctgauss(m.params, x=x, y=y, err=ey)[1]**2).sum()
assert N.allclose(N.array([chisq], dtype='float64'), N.array([15.516134], dtype='float64'))
assert m.dof == 8
return
示例4: zandtfit
def zandtfit(Inclination, Planetaryradius_SI, Keplerlc, Teff, Logg, Metalicity, sigma, Orbitalperiod_SI, KeplerID, Planetnumberer):
Planetaryradius_Earth = (Planetaryradius_SI) / 6.3675E6 #convert the planetary radius to earth radii
p0 = [math.cos(1.570795), Planetaryradius_Earth, Teff, Logg, np.log10(Metalicity)] #inital guess (from kepler mast and headers)
fa = {'Keplerlc':Keplerlc, 'sigma':sigma, 'Orbitalperiod_SI':Orbitalperiod_SI, 'KeplerID':KeplerID, 'Planetnumberer':Planetnumberer} #additional variables to be past to the function
parinfo = [{'value':p0[0], 'fixed':0, 'limited':[1,1], 'limits':[-1,1], 'step':0.01}, {'value':p0[1], 'fixed':0, 'limited':[1,0], 'limits':[0.01,100], 'step':0},\
{'value':p0[2], 'fixed':0, 'limited':[1,1], 'limits':[0,40000], 'step':0}, {'value':p0[3], 'fixed':0, 'limited':[1,1], 'limits':[0,5.0], 'step':0},\
{'value':p0[4], 'fixed':0, 'limited':[1,1], 'limits':[-5,1], 'step':0} ]
m = mpfit(minimisefunction, p0, functkw = fa, quiet = 0, maxiter = 35, parinfo = parinfo, ftol=0.0001) #run the mpfit for the best fit
#print m #testing
bestfitarray = m.params #extract the results
errors = m.perror #these need to be properly stored
covar = m.covar #these need to be properly stored
if errors == None: #i.e. if mpfits is a pain and decides to not return the errors or covariance properly
errors = np.zeros(5) #create an empty errors array
if covar == None: #if no covariance array is produced, create an array of zeros so that there are no problems later
covar = np.zeros((5,5))
#print bestfitarray
Inclination_fit = math.acos(bestfitarray[0]) #Extract the fit inclination
Planetaryradius_SI_fit = bestfitarray[1] * 6.3675E6 #Extract the fit planetary radius and convert it to SI units
Teff_fit = bestfitarray[2] #Extract the fit Teff
Logg_fit = bestfitarray[3] #Extract the fit logg of the surface gravity
Metalicity_fit = (10**bestfitarray[4]) #Extract the metalicity and remove the logg
Mstar_SI, Rstar_SI, Stellardensity_SI = RMrhocalc(Teff_fit, Logg_fit, Metalicity_fit) #Calculate the stellar mass, radius and density
semimajoraxis_SI = semimajoraxiscalc(Orbitalperiod_SI, Mstar_SI) #calculate the semi-major axis
T_dur_SI = Transitdurationcalc(Rstar_SI, Planetaryradius_SI_fit, semimajoraxis_SI, Inclination_fit, Orbitalperiod_SI) #calculate the transit duration
return Inclination_fit, Planetaryradius_SI_fit, Teff_fit, Logg_fit, Metalicity_fit, Mstar_SI, Rstar_SI, Stellardensity_SI, semimajoraxis_SI, T_dur_SI, errors, covar
示例5: _run_mpfit
def _run_mpfit(self):
"""Run an MPFIT regression"""
# Make up the PARINFO list
parinfo = []
for i in range(len(self._guess)):
pdict = {
"value": self._guess[i].copy(),
"fixed": 0,
"limited": self._ilimited[i],
"limits": self._ilimits[i],
}
parinfo.append(pdict)
quiet = 1
if self.debug:
quiet = 0
m = mpfit.mpfit(self._residualsMPFIT, self._guess, parinfo=parinfo, quiet=quiet, debug=self.debug)
self._result = m.params
self._niter = m.niter
if m.perror is not None:
self._stdev = m.perror
else:
self._stdev = zeros(len(self._guess))
if m.covar is not None:
self._covar = m.covar
else:
self._covar = zeros((len(self._guess), len(self._guess)))
self._mpfit = m
示例6: newfit2
def newfit2( infile, outfile, xcol, ycol, p0, \
constrain=[ {'fixed':0}, {'fixed':0}, {'fixed':0}, {'fixed':0}, {'fixed':0} ] ) :
[x,y] = getdata( infile, xcol, ycol )
err = numpy.ones( len(x), dtype=float )
parinfo = [ {'fixed':0}, {'fixed':0}, {'fixed':0}, {'fixed':0}, {'fixed':0} ]
fa = {'x':x, 'y':y, 'err':err}
m = mpfit.mpfit(myfunc, p0, functkw=fa, parinfo=constrain)
fout = open( outfile, "w" )
fout.write("# %s\n" % outfile )
fout.write("# fit to spectrum %s, xcol=%d, ycol=%d\n" % ( infile, xcol, ycol ) )
fout.write("# final fit:\n")
fout.write("# yavg= %0.5f %d \n" % (m.params[0], constrain[0]['fixed']) )
fout.write("# slope = %0.5f %d\n" % (m.params[1], constrain[1]['fixed']) )
fout.write("# amp = %0.5f %d\n" % (m.params[2], constrain[2]['fixed']) )
fout.write("# v0 = %0.3f %d\n" % (m.params[3], constrain[3]['fixed']) )
fout.write("# FWHM = %0.3f %d\n" % (m.params[4], constrain[4]['fixed']) )
fout.write("#\n")
xavg = 0.5 * (x[0] + x[len(x)-1])
fit = eval('m.params[0] + m.params[1]*(x-xavg) + \
m.params[2]*numpy.exp(-2.772 * pow( (x-m.params[3])/m.params[4], 2.))')
# fit to raw data, including slope
yminusSlope = eval('y - m.params[1]*(x-xavg)')
# raw data with linear slope removed
gfit = eval('m.params[0] + m.params[2]*numpy.exp(-2.772 * pow( (x-m.params[3])/m.params[4], 2.))')
# gaussian fit to data with slope removed
yminusSlopeNorm = eval('yminusSlope/m.params[0]')
# normalized absorption
gfitNorm = eval('gfit/m.params[0]')
for i in range(0,len(x)) :
fout.write(" %10.3f %9.4f %9.4f %9.4f %9.4f %9.5f %9.5f\n" % \
(x[i],y[i],fit[i],yminusSlope[i],gfit[i],yminusSlopeNorm[i],gfitNorm[i] ) )
fout.close()
示例7: onedgaborfit
def onedgaborfit(xax, data, err=None,
params=[0,1,0,1,1,0],fixed=[False,False,False,False,False,False],
limitedmin=[False,False,False,True,True,True],
limitedmax=[False,False,False,False,False,True], minpars=[0,0,0,0,0,0],
maxpars=[0,0,0,0,0,360], quiet=True, shh=True,
veryverbose=False):
"""
Inputs:
xax - x axis
data - y axis
err - error corresponding to data
params - Fit parameters: Height of background, Amplitude, Shift, Width, Wavelength, Phase
fixed - Is parameter fixed?
limitedmin/minpars - set lower limits on each parameter (default: width>0)
limitedmax/maxpars - set upper limits on each parameter
quiet - should MPFIT output each iteration?
shh - output final parameters?
Returns:
Fit parameters
Model
Fit errors
chi2
"""
def mpfitfun(x,y,err):
if err is None:
def f(p,fjac=None): return [0,(y-onedgabor(x,*p))]
else:
def f(p,fjac=None): return [0,(y-onedgabor(x,*p))/err]
return f
if xax == None:
xax = np.arange(len(data))
parinfo = [ {'n':0,'value':params[0],'limits':[minpars[0],maxpars[0]],'limited':[limitedmin[0],limitedmax[0]],'fixed':fixed[0],'parname':"HEIGHT",'error':0} ,
{'n':1,'value':params[1],'limits':[minpars[1],maxpars[1]],'limited':[limitedmin[1],limitedmax[1]],'fixed':fixed[1],'parname':"AMPLITUDE",'error':0},
{'n':2,'value':params[2],'limits':[minpars[2],maxpars[2]],'limited':[limitedmin[2],limitedmax[2]],'fixed':fixed[2],'parname':"SHIFT",'error':0},
{'n':3,'value':params[3],'limits':[minpars[3],maxpars[3]],'limited':[limitedmin[3],limitedmax[3]],'fixed':fixed[3],'parname':"WIDTH",'error':0},
{'n':4,'value':params[4],'limits':[minpars[4],maxpars[4]],'limited':[limitedmin[4],limitedmax[4]],'fixed':fixed[4],'parname':"WAVELENGTH",'error':0},
{'n':5,'value':params[5],'limits':[minpars[5],maxpars[5]],'limited':[limitedmin[5],limitedmax[5]],'fixed':fixed[5],'parname':"PHASE",'error':0}]
mp = mpfit(mpfitfun(xax,data,err),parinfo=parinfo,quiet=quiet)
mpp = mp.params
mpperr = mp.perror
chi2 = mp.fnorm
if mp.status == 0:
raise Exception(mp.errmsg)
if (not shh) or veryverbose:
print "Fit status: ",mp.status
for i,p in enumerate(mpp):
parinfo[i]['value'] = p
print parinfo[i]['parname'],p," +/- ",mpperr[i]
print "Chi2: ",mp.fnorm," Reduced Chi2: ",mp.fnorm/len(data)," DOF:",len(data)-len(mpp)
return mpp,onedgabor(xax,*mpp),mpperr,chi2
示例8: ab_fit
def ab_fit(src,xd,td,lguess,xmin_id,xmax_id,evmin1,evmax1,evmin2,evmax2):
npar = len(lguess)
guessp = np.array(lguess, dtype='float64')
plimd = [[False,False]]*npar
plims = [[0.,0.]]*npar
parbase = {'value': 0., 'fixed': 0, 'parname': '', 'limited': [0, 0], 'limits': [0., 0.]}
pname = ['bg']*npar
pfix = [False]*npar
count = 1
for i in range(npar):
if(i==0):
pname[i] = 'Tcont'
if( ((i-1)%3 == 0) and (i>0) ):
pname[i] = 'tau'+str(count)
if( ((i-2)%3 == 0) and (i>0) ):
pname[i] = 'v0'+str(count)
if( ((i-3)%3 == 0) and (i>0) ):
pname[i] = 'wid'+str(count)
count = count + 1
parinfo = []
for i in range(len(guessp)):
parinfo.append(copy.deepcopy(parbase))
for i in range(len(guessp)):
parinfo[i]['value'] = guessp[i]
parinfo[i]['fixed'] = pfix[i]
parinfo[i]['parname'] = pname[i]
parinfo[i]['limited'] = plimd[i]
## data and 1-sigma uncertainty ##
x = xd[xmin_id:xmax_id]
y = td[xmin_id:xmax_id]
sg,\
erry = get_tb_sigma(xd, td, evmin1, evmax1, evmin2, evmax2)
erry = erry[xmin_id:xmax_id]
x = x.astype(np.float64)
y = y.astype(np.float64)
erry = erry.astype(np.float64)
fa = {'x':x, 'y':y, 'err':erry}
mp = mpfit(myabfunc, guessp, parinfo=parinfo, functkw=fa, quiet=True)
## Fit values of Tau ##
abp = mp.params
abper = mp.perror
fit = 0.
for i in range(1, len(abp), 3):
fit = fit + abp[i]*np.exp(- ( (x-abp[i+1])/(0.6005612*abp[i+2]))**2)
fit = np.exp(-fit)
# fit = abp[1]*fit
return x,fit,y/abp[0],abp,abper,npar,parbase,pname,parinfo
示例9: delPuncorr_bestfit
def delPuncorr_bestfit(k, delP_over_P):
'''
'''
fa = {'x': k, 'y': delP_over_P}
param_guess = [-4.0]
bestfit = mpfit.mpfit(nongauss_poly_mpfit, param_guess, functkw=fa, quiet=True)
return bestfit.params
示例10: mpfitexpr
def mpfitexpr(func, x, y, err, start_params, check=True, full_output=False,
imports=None, **kw):
"""Fit the used defined expression to the data
Input:
- func: string with the function definition
- x: x vector
- y: y vector
- err: vector with the errors of y
- start_params: the starting parameters for the fit
Output:
- The tuple (params, yfit) with best-fit params and the values of func evaluated at x
Keywords:
- check: boolean parameter. If true(default) the function will be checked for sanity
- full_output: boolean parameter. If True(default is False) then instead of best-fit parameters the mpfit object is returned
- imports: list of strings, of optional modules to be imported, required to evaluate the function
Example:
params,yfit=mpfitexpr('p[0]+p[2]*(x-p[1])',x,y,err,[0,10,1])
If you need to use numpy and scipy functions in your function, then
you must to use the full names of these functions, e.g.:
numpy.sin, numpy.cos etc.
This function is motivated by mpfitexpr() from wonderful MPFIT IDL package
written by Craig Markwardt
"""
hash = {}
hash['numpy'] = numpy
hash['scipy'] = scipy
if imports is not None:
for i in imports:
#exec '%s=__import__("%s")'%(a,b) in globals(),locals()
hash[i] = __import__(i)
def myfunc(p, fjac=None, x=None, y=None, err=None):
return [0, eval('(y-(%s))/err' % func, hash, locals())]
myre = "[^a-zA-Z]p\[(\d+)\]"
r = re.compile(myre)
maxp = -1
for m in re.finditer(r, func):
curp = int(m.group(1))
maxp = curp if curp > maxp else maxp
if check:
if maxp == -1:
raise Exception("wrong function format")
if maxp + 1 != len(start_params):
raise Exception(
"the length of the start_params != the length of the parameter verctor of the function")
fa = {'x': x, 'y': y, 'err': err}
res = mpfit.mpfit(myfunc, start_params, functkw=fa, **kw)
yfit = eval(func, globals(), {'x': x, 'p': res.params})
if full_output:
return (res, yfit)
else:
return (res.params, yfit)
示例11: main
def main():
# Generate a noisy polynomial
# [off, x1, x2, x3, y1, y2, y3]
pIn = [2.0, 1.5, 0.1, 0.3, 1.0, 2.0, 0.05]
pIn = [1.0, 0.2, 0.0, 0.0, 0.1, 0.0, 0.0]
shape = (200, 200)
X, Y, Z, xyData = genpolydata(pIn, shape, 300, 10.2)
print X.shape
print Y.shape
print Z.shape
print xyData.shape
# raw_input()
# Define an function to evaluate the residual
def errFn(p, fjac=None):
status = 0
# poly_surface' returns the 'rfunc' function and the X,Y data is
# inserted via argument unpacking.
return status, poly_surface(p)(*[Y, X]) - Z
# Fit the data starting from an initial guess
mp = mpfit(errFn, parinfo=inParms, quiet=False)
print
for i in range(len(inParms)):
print "%s = %f +/- %f" % (inParms[i]['parname'],
mp.params[i],
mp.perror[i])
p1 = mp.params
#-------------------------------------------------------------------------#
# Plot the original, fit & residual
fig = pl.figure(figsize=(18,4.3))
ax1 = fig.add_subplot(1,3,1)
cax1 = ax1.imshow(xyData, origin='lower',cmap=mpl.cm.jet)
cbar1=fig.colorbar(cax1, pad=0.0)
ax1.scatter(X, Y, c=Z, s=40, cmap=mpl.cm.jet)
ax1.set_title("Sampled Data")
ax1.set_xlim(0, shape[-1]-1)
ax1.set_ylim(0, shape[-2]-1)
ax1.set_aspect('equal')
ax2 = fig.add_subplot(1,3,2)
xyDataFit = poly_surface(p1, shape)
cax2 = ax2.imshow(xyDataFit, origin='lower', cmap=mpl.cm.jet)
cbar2=fig.colorbar(cax2, pad=0.0)
ax2.set_title("Model Fit")
ax3 = fig.add_subplot(1,3,3)
xyDataRes = xyData - xyDataFit
cax3 = ax3.imshow(xyDataRes, origin='lower', cmap=mpl.cm.jet)
cbar2=fig.colorbar(cax3, pad=0.0)
ax3.set_title("Residual")
pl.show()
示例12: disk_bulge_AIM
def disk_bulge_AIM(Iobs,err,psf,guessP,quiet=0,ftol=1.e-10,return_image=False):
#Dictionary to pass parameters to function `handleFunc`
fa = {'y':Iobs,'x':psf,'err':err}
#Possible constraints for each parameter
parinfo= [{'value':0., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]} for i in range(len(guessP))]
#Pass initial values to parinfo
for i in range(len(guessP)):
parinfo[i]['value'] = guessP[i]
L = guessP[0]
#Set parameter limits and whether fixed
parinfo[0]['fixed'] = 1 #xmax
parinfo[1]['fixed'] = 1 #N
parinfo[2]['limited'] = [1,1] #disk flux
parinfo[2]['limits'] = [0.1,1.e10] #
parinfo[3]['limited'] = [1,1] #bulge flux
parinfo[3]['limits'] = [0.1,1.e10] #
parinfo[4]['limited'] = [1,1] #q (q=10 corresponds to e = 0.82)
parinfo[4]['limits'] = [1.0,20.0]
parinfo[5]['limited'] = [1,1] #phi (there is 2pi degeneracy, but keep to avoid boundaries)
parinfo[5]['limits'] = [0.0,6.283185]
parinfo[6]['limited'] = [1,1] #disk re
parinfo[6]['limits'] = [0.05,3.0*L] #
parinfo[7]['limited'] = [1,1] #bulge re
parinfo[7]['limits'] = [0.05,3.0*L] #
parinfo[8]['limited'] = [1,1]
parinfo[8]['limits'] = [0.5,4.0] #n_b
parinfo[9]['fixed'] = 1 #kappa
parinfo[10]['fixed'] = 1 #Shear 1
parinfo[11]['fixed'] = 1 #Shear 2
parinfo[12]['limited'] = [1,1] #f1
parinfo[12]['limits'] = [-1.0,1.0]
parinfo[13]['limited'] = [1,1] #f2
parinfo[13]['limits'] = [-1.0,1.0]
parinfo[14]['limited'] = [1,1] #g1
parinfo[14]['limits'] = [-1.0,1.0]
parinfo[15]['limited'] = [1,1] #g2
parinfo[15]['limits'] = [-1.0,1.0]
parinfo[16]['limited'] = [1,1] #cx
parinfo[16]['limits'] = [-L,L]
parinfo[17]['limited'] = [1,1] #cy
parinfo[17]['limits'] = [-L,L]
m = mpfit.mpfit(disk_bulge_func,guessP,parinfo=parinfo,functkw = fa,quiet=quiet,ftol=ftol)
if return_image == True:
fit_image = disk_bulge_model(m.params,psf)
return m,fit_image
else:
return m
示例13: __init__
def __init__(self,f, xdata, ydata, p0=None, sigma=None, fixed=None,limits=None, maxiter=200,quiet=1):
args, varargs, varkw, defaults = inspect.getargspec(f)
self.quiet = quiet
if len(args) < 2:
msg = "Unable to determine number of fit parameters."
raise ValueError(msg)
def general_function(params, fjac=None, xdata=None, ydata=None):
return [0, f(xdata, *params) - ydata]
def weighted_general_function(params,fjac=None, xdata=None, ydata=None, weights=None):
return [0, weights * (f(xdata, *params) - ydata)]
parinfo = [{'value':1., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]} for i in range(len(args)-1)]
if p0 != None:
for x,y in zip(parinfo,p0):
x['value']=y
if fixed != None:
for x,y in zip(parinfo,fixed):
x['fixed']=y
if limits != None:
for x,y in zip(parinfo,limits):
x['limited']=y[0]
x['limits']=y[1]
#args = (xdata, ydata, f)
if sigma is None:
func = general_function
# print 'here'
# my_functkw = {'xdata':xdata,'ydata':ydata,'function':f}
my_functkw = {'xdata':xdata,'ydata':ydata}
else:
func = weighted_general_function
weights= 1.0/asarray(sigma)
# my_functkw = {'xdata':xdata,'ydata':ydata,'function':f,'weights':weights}
my_functkw = {'xdata':xdata,'ydata':ydata,'weights':weights}
result = mpfit(func, functkw=my_functkw, parinfo = parinfo,quiet=self.quiet,maxiter=maxiter)
self.params = result.params
self.errors = result.perror
self.dof = result.dof
self.chi2 = result.fnorm
self.covar = result.covar
示例14: fit_pixel
def fit_pixel(inputs):
wl,q_array,u_array,sigma_q,sigma_u=inputs
pos=[1,1,10]
funcargs= {'x':wl, 'y':[q_array,u_array],'err':[sigma_q,sigma_u]}
fit=mpfit.mpfit(alpha_function,pos,functkw=funcargs,autoderivative=1,quiet=1)
parms=fit.params
parms[:2]*=1e-7
dparms=fit.perror
dparms[:2]*=1e-7
return np.array([parms,dparms,fit.fnorm])
示例15: dlosenv_peakfit_sigma_env_fit_test
def dlosenv_peakfit_sigma_env_fit_test(cat_corr, n_NN=3, fit='gauss', **kwargs):
""" Linear fit of the best-fit sigma as a function of environment.
Bestfit sigma values are computed for the dLOS distribution in bins of
galaxy environment. Linear fit is done using MPFit.
"""
env_low, env_high, fpeaks, fpeak_errs, sigmas, sigma_errs, amps, nbins = \
dlos_envbin_peakfit(
cat_corr,
n_NN = n_NN,
fit = fit,
**kwargs
)
env_mid = np.array( 0.5 * (env_low + env_high) )
p0 = [ -0.03, 4.0 ] # guess
fa = {'x': env_mid, 'y': sigmas, 'err': sigma_errs}
fit_param = mpfit.mpfit(mpfit_linear, p0, functkw=fa, quiet=1)
best_slope = fit_param.params[0]
best_yint = fit_param.params[1]
print 'Entire range'
print best_slope, best_yint
for range_test in [20.0, 30.0, 40.0, 50.0]:
test_range = np.where(
env_mid < range_test
)
fa = {'x': env_mid[test_range], 'y': sigmas[test_range], 'err': sigma_errs[test_range]}
fit_param = mpfit.mpfit(mpfit_linear, p0, functkw=fa, quiet=1)
best_slope = fit_param.params[0]
best_yint = fit_param.params[1]
print 'dNN < ', str(range_test)
print best_slope, best_yint
return best_slope, best_yint