当前位置: 首页>>代码示例>>Python>>正文


Python more_itertools.unique_everseen函数代码示例

本文整理汇总了Python中more_itertools.unique_everseen函数的典型用法代码示例。如果您正苦于以下问题:Python unique_everseen函数的具体用法?Python unique_everseen怎么用?Python unique_everseen使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了unique_everseen函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_everseen

 def test_everseen(self):
     """ensure duplicate elements are ignored"""
     u = mi.unique_everseen('AAAABBBBCCDAABBB')
     self.assertEqual(
         ['A', 'B', 'C', 'D'],
         list(u)
     )
开发者ID:Southpaw-TACTIC,项目名称:TACTIC,代码行数:7,代码来源:test_recipes.py

示例2: kth_smallest_elem

def kth_smallest_elem(node, k):
    ls = inorder_traversal(node)
    # unique_everseen removes duplicates from a list in O(N) time accorinding
    # to
    # http://stackoverflow.com/questions/480214/how-do-you-remove-duplicates-from-a-list-in-python-whilst-preserving-order
    result = list(unique_everseen(ls))
    return result[k - 1]
开发者ID:xudaniel11,项目名称:interview_preparation,代码行数:7,代码来源:kth_smallest_element_BST.py

示例3: fetch_skill_api

def fetch_skill_api():
    
    list_of_files = ['pre_6.txt']
    
    #list_of_letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', ' ']
    
    for i in list_of_files:
      master_skills_list = []
      i_path_join = os.path.join(os.path.abspath(os.path.dirname(__file__)), "..", "static", "data", i)
      with open(i_path_join, 'r') as fp:
        contents = fp.readlines()
        #print contents
        for line in contents:
          print line
          master_skills_list.extend(autosuggest_api(line))
      
      print master_skills_list
      
      
      c = list(unique_everseen(master_skills_list))
      ioutput_path_join = os.path.join(os.path.abspath(os.path.dirname(__file__)), "..", "static", "data", i + 'out')
      
      with open(ioutput_path_join, 'w') as fp:
        for item in c:
          fp.write("%s\n" % item)
开发者ID:mrbhandari,项目名称:jobsearch,代码行数:25,代码来源:skill_search.py

示例4: main

def main():
	names = []
	types = ['Grass', 'Poison', 'Fire', 'Dragon', 'Flying', 'Water', 'Bug', 'Normal', 'Electric', 'Ground', 'Fairy', 'Fighting', 'Psychic', 'Rock', 'Steel', 'Ice', 'Ghost', 'Dark']
	scrapeNames(names, types)

	pokemon = {
		'images': {},
		'heights': {},
		'weights': {},
		'powers': {},
		'names': []
	}

	scrapePowers(pokemon, names)
	scrapeHeightsWeights(pokemon, names)

	names = list(unique_everseen(names))
	pokemon['names'] = names

	scrapeImages(pokemon, names)

	fileName = 'stats/stats.json'
	file = open(fileName, 'w')
	json.dump(pokemon, file, indent = 2)
	file.close()
开发者ID:ecdavis15,项目名称:PokemonChart,代码行数:25,代码来源:stats.py

示例5: get_tree

    def get_tree(self, node=None, filtered_ids=[]):
        """
        node - головной объект, от которого строим дерево,
        если он не указан, то строим дерево из всех объектов.
        """
        def get_descendants(node):
            descendents = []
            children = node.get_children()
            children.filter(pk__in=filtered_ids)
            for n in children:
                n_descendents = get_descendants(n)
                n_descendents = [n for n in n_descendents if n.pk in filtered_ids]
                descendents += n_descendents
            return [node] + descendents

        if node:
            tree = get_descendants(node)
        else:
            tree = []
            lev1_pages = self.filter(level=1)
            if filtered_ids:
                lev1_pages = self.filter(pk__in=filtered_ids)
            for node in lev1_pages:
                tree += get_descendants(node)
        from  more_itertools import unique_everseen
        tree = list(unique_everseen(tree))
        return tree
开发者ID:volgoweb,项目名称:wt,代码行数:27,代码来源:models.py

示例6: interpret

def interpret(atom_index, grammar, user_input):
    stripped_input = strip_punctuation(user_input)

    base_atoms_raw = atom_index.query(stripped_input)
    base_atoms = []
    for a in base_atoms_raw:
        base_atoms.append(a.clone_nonstopword())

    stop_words = filter(lambda a: a.get_stopword(), grammar.get_atoms())
    extra_atoms = []
    for stop_word in stop_words:
        if not stop_word in base_atoms:
            extra_atoms.append(stop_word)
    expanded_atoms = base_atoms + extra_atoms

    result = []
    for query_pattern in grammar.get_query_patterns():
        phrases = generate_phrases(grammar, expanded_atoms)
        queries = query_pattern.resolve(phrases)
        for query in queries:
            result.append(query)
    result = filter(lambda q: q.get_score() > 0, result)
    result = filter(lambda q: q.validate(base_atoms), result)
    result = list(unique_everseen(result, lambda q: q.get_english()))
    result.sort(key=lambda q: q.get_score())
    result.reverse()
    for q in result:
        q.set_base_atoms(base_atoms)
    return result
开发者ID:rphilander,项目名称:proteus,代码行数:29,代码来源:__init__.py

示例7: ref_insert_line

def ref_insert_line(line, form):
    """
    Inserts \ref{} functions into tex files by substituting for a regex.

    :param line: a line from a tex file, in the form of a string,
        which we want to process and insert references into
    :param form: a regular expression specification
        for a string to be replaced.
    :return: a string, wherein all of the strings specified by
        form are replaced by \ref{form}
    """
    # lineIterator = form.search(line)
    # searchAndSub = []
    # lineNew = line
     # while searchAndSub is not None:
    #     searchAndSub = form.search(line)
    #     lineNew = lineNew.replace()

    searchresults = form.findall(line)
    iterableStrings = list(unique_everseen(searchresults))
    lineNew = line
    for substring in iterableStrings:
        lineNew = lineNew.replace(substring, r'(\ref{' + substring[1:-1] + r'})')

    return lineNew
开发者ID:michaelagibson,项目名称:Equilibrium_of_Heterogeneous,代码行数:25,代码来源:parse_add_eqn_references.py

示例8: create_a_pb_unit_cell

    def create_a_pb_unit_cell(self,
                              fpb_prop,
                              uc_name
                              ):
        '''
        fpb_prop: a tuple contains:
            fuel_temps: temperature list for unique pebbles in the unit cell
            a matrix of unique pebbles x n layers of fuel in a triso
            coating_temps: a list that contains temp for each of the non-fuel layers in triso, e.g. 4x5
            cgt: central graphite temperature
            sht: shell temperature
            burnups: a list of 14 burnups
        uc_name: unit cell name
        '''
        fuel_temps, coating_temps, cgt, sht, uc_name, burnups, pb_comp_dir = fpb_prop
        fpb_list = []
        unique_fpb_list = {}
        unique_burnups = list(unique_everseen(burnups))
        unique_burnup_nb = len(unique_burnups)
        assert fuel_temps.shape[0] == unique_burnup_nb, 'wrong dimension %s' %str(fuel_temps.shape)
        assert coating_temps.shape[0] == unique_burnup_nb, 'wrong dimension' 

        # create a list of unique pebbles
        for i, bu in enumerate(unique_burnups):
            pb_name = 'pb%s%d' % (uc_name, bu)
            unique_fpb_list[bu] = self.create_a_fuel_pebble(fuel_temps[bu-1, :], 
                                                            coating_temps[unique_burnups[i]-1, :],
                                                            cgt, sht,
                                                            pb_name,
                                                            unique_burnups[i], 
                                                            pb_comp_dir)
        # create a list of all the 14 fuel pebbles, some of them are exactly the same
        for bu in burnups:
            fpb_list.append(unique_fpb_list[bu])
        return fpb_list
开发者ID:xwa9860,项目名称:FIG,代码行数:35,代码来源:fuel.py

示例9: _countEntities

def _countEntities(cols):
	for i in range(len(cols)):
		entries = cols[i]["entries"]
		entityCount = 0
		multipleEnts = False
		for entry in entries:
			entrySoup = BeautifulSoup(entry, "lxml")
			links = entrySoup.findAll("a")
			linksHref = [aTag["href"] for aTag in links]
			linksHref = list(unique_everseen(linksHref))
			linksCount = len(links)
			for link in links:
				# Image werden nicht gezählt
				if link.find("img") != None:
					linksCount -= 1
				# Ebenso dürfen es nur Wikipedia-interne Links sein
				elif link["href"][0:5] != "/wiki":
					linksCount -= 1
				# Manche Tabellen setzen doppelte Verlinkunden (e.g. TableID = 513, List of Olympic medalists in basketball)
				elif link["href"] in linksHref:
					linksHref.remove(link["href"]) # Beim ersten Mal löschen
				elif link["href"] not in linksHref:
					linksCount -= 1 # Bei jedem weiteren Mal, die Anzahl korrigieren
			if linksCount > 0:
				entityCount += 1
				if linksCount > 1:
					multipleEnts = True

		# Bewertung: Maximal 50 Punkte möglich (100% sind Entitäten)
		cols[i]["rating"] = int(math.floor(MAX_ENTITIES_POINTS * (entityCount / len(entries))))
		cols[i]["entityCount"] = entityCount
		cols[i]["multipleEntities"] = multipleEnts
开发者ID:AlexImmer,项目名称:RDFs-from-wikitables,代码行数:32,代码来源:keyExtractor.py

示例10: wordNetNER

def wordNetNER(document):
	plant_sns = (wn.synsets('plant', pos="n"))
	plant = plant_sns[1] #(botany) a living organism lacking the power of locomotion #hardcoded

	wordnet_names = []
	#wordnet_lemmatizer = WordNetLemmatizer   ##Lematizer doesn't work....
	for word in document:
		#word = wordnet_lemmatizer.lemmatize(word) ##Lematizer doesn't work...
		mySynsets = wn.synsets(word, pos="n")

		i = 0
		for i in range(0, 3):
			try:
				given_word = mySynsets[i] #tries first 3 synsets
				definition = (given_word.definition())
				p1 = re.compile('plant(s?)\s')
				p2 = re.compile('organism(s?)\s')
				p3 = re.compile('animal(s?)\s')
				match1 = p1.search(definition)
				match2 = p2.search(definition)
				match3 = p3.search(definition)

				if match1 or match2 or match3:  #if the given word has "plants" or "animals" in the def, check to see how similar it is to "plant"
					similarity_score = (given_word.path_similarity(plant)) #check similarity score
					if similarity_score >= 0.2:
						#print(similarity_score)
						#print ("The words: "+(str(given_word)) + "  has a sim score of:  " +str(similarity_score))
						wordnet_names.append(word)
						named_entities.append(word)
			#hypernym = given_word.hypernyms() #hypernym is list #synset 'organism' exists #can't search in the hypernyms....hmm...
				i += 1
			except IndexError:
				pass
	wordnet_ner = (list(unique_everseen(wordnet_names)))
	return wordnet_ner
开发者ID:hclent,项目名称:BioNLP-literature-tool,代码行数:35,代码来源:organismNER.py

示例11: keys

 def keys(self, pattern):
     """Aggregated keys method."""
     def _keys(node, pattern):
         for result in node.keys(pattern):
             self._output_queue.put(result)
     results = self._runner(_keys, pattern)
     # return list(OrderedDict.fromkeys(results))
     return sorted(list(unique_everseen(results)))
开发者ID:max-k,项目名称:flask-multi-redis,代码行数:8,代码来源:aggregator.py

示例12: clash_table

	def clash_table(self,i,j):
		units = [];
		units.extend(self.row(i));
		units.extend(self.col(j));
		units.extend(self.box(which_box(i,j)));
		units = list(unique_everseen(units));
		values = list(chain(*[ list(unit.available_values) for unit in units ]));
		return(table(values));
开发者ID:marcoalbuquerque-sfu,项目名称:CS486,代码行数:8,代码来源:Sudoku.py

示例13: __init__

 def __init__(self, data=np.asarray([[0, 0]]), cls_label=np.asarray([0]),
              ses_label=np.asarray([0]), buff_size=BUFF_SIZE,
              n_components=(K_CLS, K_SES, K_RES), beta=BETA,
              NMF_updates='beta', n_iter=N_ITER, lambdas=[0, 0, 0],
              normalize=False, fixed_factors=None, verbose=0,
              dist_mode='segment',Wn=None):
     self.data_shape = data.shape
     self.buff_size = np.min((buff_size, data.shape[0]))
     self.n_components = np.asarray(n_components, dtype='int32')
     self.beta = theano.shared(np.asarray(beta, theano.config.floatX),
                               name="beta")
     self.verbose = verbose
     self.normalize = normalize
     self.lambdas = np.asarray(lambdas, dtype=theano.config.floatX)
     self.n_iter = n_iter
     self.NMF_updates = NMF_updates
     self.iters = {}
     self.scores = []
     self.dist_mode = dist_mode
     if fixed_factors is None:
         fixed_factors = []
     self.fixed_factors = fixed_factors
     fact_ = np.asarray([base.nnrandn((self.data_shape[1],
                                       np.sum(self.n_components)))
                         for i in more_itertools.unique_everseen(itertools.izip(cls_label,
                                                                                ses_label))])
     self.W = theano.shared(fact_.astype(theano.config.floatX), name="W",
                            borrow=True, allow_downcast=True)
     fact_ = np.asarray(base.nnrandn((self.data_shape[0],
                                      np.sum(self.n_components))))
     self.H = theano.shared(fact_.astype(theano.config.floatX), name="H",
                            borrow=True, allow_downcast=True)
     self.factors_ = [self.H, self.W]
     if Wn is not None:
         self.Wn = Wn
     self.X_buff = theano.shared(np.zeros((self.buff_size,
                                           self.data_shape[1])).astype(theano.config.floatX),
                                 name="X_buff")
     if (self.NMF_updates == 'groupNMF') & (self.dist_mode == 'iter'):
         self.cls_sums = theano.shared(np.zeros((np.max(cls_label)+1,
                                                self.data_shape[1],
                                                self.n_components[0])
                                                ).astype(theano.config.floatX),
                                       name="cls_sums",
                                       borrow=True,
                                       allow_downcast=True)
         self.ses_sums = theano.shared(np.zeros((np.max(ses_label)+1,
                                                self.data_shape[1],
                                                self.n_components[1])
                                                ).astype(theano.config.floatX),
                                       name="ses_sums",
                                       borrow=True,
                                       allow_downcast=True)
         self.get_sum_function()
     self.get_updates_functions()
     self.get_norm_function()
     self.get_div_function()
开发者ID:mikimaus78,项目名称:groupNMF,代码行数:57,代码来源:beta_nmf_class.py

示例14: getLessonList

def getLessonList(courselink, quality):
    global session
    coursehtml = (session.get(courselink)).text

    lessonLinkRegex = re.compile('https?://www.cybrary.it/video/\w+(?:-[\w]+)*/')
    matchedLessonLink = list(unique_everseen(lessonLinkRegex.findall(coursehtml)))

    for link in matchedLessonLink:
        print "Downloading "+link
        downloadVideos(getVideoLink(link), quality)
开发者ID:Cptnprice,项目名称:cybrary-video-downloader,代码行数:10,代码来源:cybrary-video-downloader.py

示例15: reorder_cls_ses

def reorder_cls_ses(data, cls, ses, with_index=False):
    """reorder the data such that there is only
    one continuous bloc for each pair class/session

    Parameters
    ----------
    data : array
        the data
    cls : array
        the class labels for the data
    ses : array
        the session label for the data
    with_index : Boolean (default False)
        if True, the function returns the reordered indexes together
        with data and labels

    Returns
    -------
    data : array with the same shape as data
        reordered data
    cls : array with the same shape as cls
        reordered class labels
    ses : array with the same shape as ses
        reordered session labels
    ind : array with the same shape as data.shape[1]
        reordered indexes (only if with_index==True)
    """

    data_ordered = np.zeros((data.shape))
    cls_ordered = np.zeros((cls.shape))
    ses_ordered = np.zeros((ses.shape))
    if with_index:
        index = np.arange((data.shape[1],))
        index_ordered = np.zeros((index.shape))
    data_fill = 0
    for i in more_itertools.unique_everseen(itertools.izip(cls, ses)):
        ind = np.where((cls == i[0]) & (ses == i[1]))[0]
        bloc_length = data[(cls == i[0]) & (ses == i[1]), :].shape[0]
        data_ordered[data_fill:data_fill+bloc_length, ] = data[ind, :]
        cls_ordered[data_fill:data_fill+bloc_length] = cls[ind]
        ses_ordered[data_fill:data_fill+bloc_length] = ses[ind]
        if with_index:
            index_ordered[data_fill:data_fill+bloc_length] = index[ind]
        data_fill += bloc_length
    if with_index:
        return {
            'data': data_ordered,
            'cls': cls_ordered,
            'ses': ses_ordered,
            'ind': index_ordered}
    else:
        return {
            'data': data_ordered,
            'cls': cls_ordered,
            'ses': ses_ordered}
开发者ID:rserizel,项目名称:groupNMF,代码行数:55,代码来源:base.py


注:本文中的more_itertools.unique_everseen函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。