当前位置: 首页>>代码示例>>Python>>正文


Python NeuroML.NeuroML类代码示例

本文整理汇总了Python中moose.neuroml.NeuroML.NeuroML的典型用法代码示例。如果您正苦于以下问题:Python NeuroML类的具体用法?Python NeuroML怎么用?Python NeuroML使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了NeuroML类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: loadGran98NeuroML_L123

def loadGran98NeuroML_L123(filename):
    neuromlR = NeuroML()
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename)
    soma_path = populationDict['Gran'][1][0].path+'/Soma_0'
    somaVm = setupTable('somaVm',moose.Compartment(soma_path),'Vm')
    somaCa = setupTable('somaCa',moose.CaConc(soma_path+'/Gran_CaPool_98'),'Ca')
    somaIKCa = setupTable('somaIKCa',moose.HHChannel(soma_path+'/Gran_KCa_98'),'Gk')
    ## Am not able to plot KDr gating variable X when running under hsolve
    #KDrX = setupTable('ChanX',moose.HHChannel(soma_path+'/Gran_KDr_98'),'X')

    print "Reinit MOOSE ... "
    resetSim(['/elec',cells_path], simdt, plotdt, simmethod='hsolve')

    print "Running ... "
    moose.start(runtime)
    tvec = arange(0.0,runtime*2.0,plotdt)
    tvec = tvec[ : somaVm.vector.size ]
    plot(tvec,somaVm.vector)
    title('Soma Vm')
    xlabel('time (s)')
    ylabel('Voltage (V)')
    figure()
    plot(tvec,somaCa.vector)
    title('Soma Ca')
    xlabel('time (s)')
    ylabel('Ca conc (mol/m^3)')
    figure()
    plot(tvec,somaIKCa.vector)
    title('soma KCa current')
    xlabel('time (s)')
    ylabel('KCa current (A)')
    print "Showing plots ..."
    show()
开发者ID:csiki,项目名称:MOOSE,代码行数:34,代码来源:Granule98_hsolve.py

示例2: runSTGNeuroML_L123

def runSTGNeuroML_L123(filename):
    neuromlR = NeuroML()
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename)
    soma1_path = populationDict['AB_PD'][1][0].path+'/Soma_0'
    soma1Vm = setupTable('somaVm',moose.Compartment(soma1_path),'Vm')
    soma2_path = populationDict['LP'][1][0].path+'/Soma_0'
    soma2Vm = setupTable('somaVm',moose.Compartment(soma2_path),'Vm')
    soma3_path = populationDict['PY'][1][0].path+'/Soma_0'
    soma3Vm = setupTable('somaVm',moose.Compartment(soma3_path),'Vm')
    #somaCa = setupTable('somaCa',moose.CaConc(soma_path+'/CaPool_STG'),'Ca')
    #somaIKCa = setupTable('somaIKCa',moose.HHChannel(soma_path+'/KCa_STG'),'Ik')
    #somaCaE = setupTable('somaCaE',moose.HHChannel(soma_path+'/CaT_STG/nernst'),'E')
    ## Am not able to plot KDr gating variable X when running under hsolve
    #KDrX = setupTable('ChanX',moose.HHChannel(soma_path+'/Gran_KDr_98'),'X')

    print "Reinit MOOSE ... "
    resetSim(['/elec',cells_path], simdt, plotdt, simmethod='hsolve')

    print "Running ... "
    moose.start(runtime)
    tvec = arange(0.0,runtime+2*plotdt,plotdt)
    tvec = tvec[ : soma1Vm.vec.size ]
    plot(tvec,soma1Vm.vec,label='AB_PD',color='g',linestyle='dashed')
    plot(tvec,soma2Vm.vec,label='LP',color='r',linestyle='solid')
    plot(tvec,soma3Vm.vec,label='PY',color='b',linestyle='dashed')
    legend()
    title('Soma Vm')
    xlabel('time (s)')
    ylabel('Voltage (V)')
    print "Showing plots ..."
    show()
开发者ID:OpenSourceBrain,项目名称:PyloricNetwork,代码行数:32,代码来源:pyloric_net_MOOSE.py

示例3: _loadElec

    def _loadElec( self, efile, elecname ):
        if ( efile[ len( efile ) - 2:] == ".p" ):
            self.elecid = moose.loadModel( efile, '/library/' + elecname)[0]
            print self.elecid
        elif ( efile[ len( efile ) - 4:] == ".swc" ):
            self.elecid = moose.loadModel( efile, '/library/' + elecname)[0]
        else:
            nm = NeuroML()
            print "in _loadElec, combineSegments = ", self.combineSegments
            nm.readNeuroMLFromFile( efile, \
                    params = {'combineSegments': self.combineSegments, \
                    'createPotentialSynapses': True } )
            if moose.exists( '/cells' ):
                kids = moose.wildcardFind( '/cells/#' )
            else:
                kids = moose.wildcardFind( '/library/#[ISA=Neuron],/library/#[TYPE=Neutral]' )
                if ( kids[0].name == 'spine' ):
                    kids = kids[1:]

            assert( len( kids ) > 0 )
            self.elecid = kids[0]
            temp = moose.wildcardFind( self.elecid.path + '/#[ISA=CompartmentBase]' )

        transformNMDAR( self.elecid.path )
        kids = moose.wildcardFind( '/library/##[0]' )
        for i in kids:
            i.tick = -1
开发者ID:DineshDevPandey,项目名称:moose,代码行数:27,代码来源:rdesigneur.py

示例4: loadGran98NeuroML_L123

def loadGran98NeuroML_L123(filename, nogui=False):
    neuromlR = NeuroML()
    populationDict, projectionDict = neuromlR.readNeuroMLFromFile(filename)
    soma_path = populationDict["Gran"][1][0].path + "/Soma_0"
    somaVm = setupTable("somaVm", moose.Compartment(soma_path), "Vm")
    somaCa = setupTable("somaCa", moose.CaConc(soma_path + "/Gran_CaPool_98"), "Ca")
    somaIKCa = setupTable("somaIKCa", moose.HHChannel(soma_path + "/Gran_KCa_98"), "Gk")

    soma = moose.Compartment(soma_path)
    print ("Reinit MOOSE ... ")
    resetSim(["/elec", "/cells"], simdt, plotdt, simmethod="ee")  # from moose.utils
    print ("Running ... ")
    moose.start(runtime)
    print ("Finished simulation of %s seconds" % runtime)

    if not nogui:
        from pylab import *

        tvec = arange(0.0, runtime, plotdt)
        plot(tvec, somaVm.vector[1:])
        title("Soma Vm")
        xlabel("time (s)")
        ylabel("Voltage (V)")
        figure()
        plot(tvec, somaCa.vector[1:])
        title("Soma Ca")
        xlabel("time (s)")
        ylabel("Ca conc (mol/m^3)")
        figure()
        plot(tvec, somaIKCa.vector[1:])
        title("KCa current (A)")
        xlabel("time (s)")
        ylabel("")
        print "Showing plots ..."
        show()
开发者ID:OpenSourceBrain,项目名称:MOOSEShowcase,代码行数:35,代码来源:Granule98.py

示例5: loadGran98NeuroML_L123

def loadGran98NeuroML_L123(filename):
    neuromlR = NeuroML()
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename)
    soma_path = populationDict['Gran'][1][0].path+'/Soma_0'
    somaVm = setupTable('somaVm',moose.Compartment(soma_path),'Vm')
    somaCa = setupTable('somaCa',moose.CaConc(soma_path+'/Gran_CaPool_98'),'Ca')
    somaIKCa = setupTable('somaIKCa',moose.HHChannel(soma_path+'/Gran_KCa_98'),'Gk')
    #KDrX = setupTable('ChanX',moose.HHChannel(soma_path+'/Gran_KDr_98'),'X')
    soma = moose.Compartment(soma_path)
    print("Reinit MOOSE ... ")
    resetSim(['/elec','/cells'],simdt,plotdt,simmethod='ee') # from moose.utils
    print("Running ... ")
    moose.start(runtime)
    tvec = arange(0.0,runtime,plotdt)
    plot(tvec,somaVm.vector[1:])
    title('Soma Vm')
    xlabel('time (s)')
    ylabel('Voltage (V)')
    figure()
    plot(tvec,somaCa.vector[1:])
    title('Soma Ca')
    xlabel('time (s)')
    ylabel('Ca conc (mol/m^3)')
    figure()
    plot(tvec,somaIKCa.vector[1:])
    title('KCa current (A)')
    xlabel('time (s)')
    ylabel('')
    print("Showing plots ...")
    show()
开发者ID:BhallaLab,项目名称:moose-examples,代码行数:31,代码来源:Granule98.py

示例6: loadXMLModel

    def loadXMLModel(self, filename, target):
        """Load a model in some XML format. 

        Looks inside the XML to figure out if this is a neuroML or an
        SBML file and calls the corresponding loader functions.

        Currently only SBML and neuroML are support. In future 9ml
        support will be provided as the specification becomes stable.

        """
        with open(filename, 'r') as xmlfile:
            for line in xmlfile:
                self._xmlreader.feed(line)
                if self._saxhandler.model_type is not None:
                    break
        ret = self._saxhandler.model_type
        self._saxhandler.model_type = None
        self._xmlreader.reset()
        if ret == MooseHandler.type_neuroml:
            #self._context.loadModel(filename, target)
            neuromlR = NeuroML()
            populationDict, projectionDict = neuromlR.readNeuroMLFromFile(filename)
        elif ret == MooseHandler.type_sbml:
            print 'Unsupported in GUI Mode'
        return ret
开发者ID:Vivek-sagar,项目名称:moose-1,代码行数:25,代码来源:moosehandler.py

示例7: _loadElec

    def _loadElec( self, efile, elecname, combineSegments ):
        library = moose.Neutral( '/library' )
        if ( efile[ len( efile ) - 2:] == ".p" ):
            self.elecid = moose.loadModel( efile, self.model.path + '/' + elecname )
        else:
            nm = NeuroML()
            nm.readNeuroMLFromFile( efile, \
                    params = {'combineSegments': combineSegments, \
                    'createPotentialSynapses': True } )
            if moose.exists( '/cells' ):
                kids = moose.wildcardFind( '/cells/#' )
            else:
                kids = moose.wildcardFind( '/library/#[ISA=Neuron],/library/#[TYPE=Neutral]' )
                if ( kids[0].name == 'spine' ):
                    kids = kids[1:]

            assert( len( kids ) > 0 )
            self.elecid = kids[0]
            temp = moose.wildcardFind( self.elecid.path + '/#[ISA=CompartmentBase]' )
            moose.move( self.elecid, self.model )
            self.elecid.name = elecname

        self._transformNMDAR( self.elecid.path )
        kids = moose.wildcardFind( '/library/##[0]' )
        for i in kids:
            i.tick = -1
开发者ID:csiki,项目名称:moose-1,代码行数:26,代码来源:rdesigneur.py

示例8: loadGran98NeuroML_L123

def loadGran98NeuroML_L123(filename):
    neuromlR = NeuroML()
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename)
    soma_path = populationDict['CA1group'][1][0].path+'/Seg0_soma_0_0'
    somaVm = setupTable('somaVm',moose.Compartment(soma_path),'Vm')
    soma = moose.Compartment(soma_path)
    moose.reinit()
    moose.start(runtime)
    tvec = np.arange(0.0,runtime,simdt)
    res =  count.spike_train_simple_stat( somaVm.vector )
    return res['number of spikes']
开发者ID:asiaszmek,项目名称:moose-core,代码行数:12,代码来源:CA1.py

示例9: loadGran98NeuroML_L123

def loadGran98NeuroML_L123(filename):
    neuromlR = NeuroML()
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename)
    soma_path = populationDict['Gran'][1][0].path+'/Soma_0'
    somaVm = setupTable('somaVm',moose.Compartment(soma_path),'Vm')
    somaCa = setupTable('somaCa',moose.CaConc(soma_path+'/Gran_CaPool_98'),'Ca')
    somaIKCa = setupTable('somaIKCa',moose.HHChannel(soma_path+'/Gran_KCa_98'),'Gk')
    #KDrX = setupTable('ChanX',moose.HHChannel(soma_path+'/Gran_KDr_98'),'X')
    soma = moose.Compartment(soma_path)
    print "Reinit MOOSE ... "
    resetSim(['/elec','/cells'],simdt,plotdt,simmethod='ee') # from moose.utils
    print "Running ... "
    moose.start(runtime)
    print 'Finished simulation for', runtime, 'seconds'
开发者ID:dilawar,项目名称:nsdf,代码行数:15,代码来源:Granule98.py

示例10: loadModel

def loadModel(filename):
    global soma_, cellSpikeTable_
    neuromlR = NeuroML()
    neuromlR.readNeuroMLFromFile(filename)
    libcell = moose.Neuron('/library/CA1soma')
    CA1Cellid = moose.copy(libcell,moose.Neutral('/cells'),'CA1')
    CA1Cell = moose.Neuron(CA1Cellid)

    spikeGen = moose.SpikeGen(CA1Cell.path+'/spikeGen')
    spikeGen.threshold = -30e-3 # V
    soma_ = moose.Compartment(CA1Cell.path+'/Seg0_soma_0_0')
    soma_.inject = 0 # by default the cell has a current injection
    moose.connect(soma_,'VmOut',spikeGen,'Vm')
    table_path = moose.Neutral(CA1Cell.path+'/data').path
    cellSpikeTable_ = moose.Table(table_path+'/spikesTable')
    moose.connect(spikeGen,'spikeOut', cellSpikeTable_,'input')
开发者ID:hrani,项目名称:moose-core,代码行数:16,代码来源:FvsI_CA1.py

示例11: loadGran98NeuroML_L123

def loadGran98NeuroML_L123(filename,params):
    neuromlR = NeuroML()
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename,params=params)
    print "Number of compartments =",\
        len(moose.Neuron(populationDict['CA1group'][1][0].path).children)
    soma_path = populationDict['CA1group'][1][0].path+'/Seg0_soma_0_0'
    somaVm = setupTable('somaVm',moose.Compartment(soma_path),'Vm')
    #somaCa = setupTable('somaCa',moose.CaConc(soma_path+'/Gran_CaPool_98'),'Ca')
    #somaIKCa = setupTable('somaIKCa',moose.HHChannel(soma_path+'/Gran_KCa_98'),'Gk')
    #KDrX = setupTable('ChanX',moose.HHChannel(soma_path+'/Gran_KDr_98'),'X')
    soma = moose.Compartment(soma_path)
    
    print "Reinit MOOSE ... "
    resetSim(['/elec','/cells'],simdt,plotdt,simmethod='hsolve') # from moose.utils
    print "Running ... "
    moose.start(runtime)
    tvec = arange(0.0,runtime,simdt)
开发者ID:neurord,项目名称:moose-core,代码行数:18,代码来源:CA1_hsolve.py

示例12: loadGran98NeuroML_L123

def loadGran98NeuroML_L123(filename):
    neuromlR = NeuroML()
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename)
    # readNeuroMLFromFile returns populationDict = { 'populationname1':(cellname,{int(instanceid1):moosecell, ... }) , ... }
    #    and projectionDict = { 'projectionname1':(source,target,[(syn_name1,pre_seg_path,post_seg_path),...]) , ... }
    soma_path = populationDict['Gran'][1][0].path+'/Soma_0'
    
    somaVm = setupTable('somaVm',moose.Compartment(soma_path),'Vm')
    somaCa = setupTable('somaCa',moose.CaConc(soma_path+'/Gran_CaPool_98'),'Ca')
    somaIKCa = setupTable('somaIKCa',moose.HHChannel(soma_path+'/Gran_KCa_98'),'Gk')
    #KDrX = setupTable('ChanX',moose.HHChannel(soma_path+'/Gran_KDr_98'),'X')
    soma = moose.Compartment(soma_path)
    
    print "Reinit MOOSE ... "
    resetSim(['/elec','/cells'],simdt,plotdt,simmethod='ee') # from moose.utils
    print "Running ... "
    moose.start(runtime)
    
    # plotting
    tvec = arange(0.0,runtime,plotdt)
    plot(tvec,somaVm.vector[1:])
    title('Soma Vm')
    xlabel('time (s)')
    ylabel('Voltage (V)')
    figure()
    plot(tvec,somaCa.vector[1:])
    title('Soma Ca')
    xlabel('time (s)')
    ylabel('Ca conc (mol/m^3)')
    figure()
    plot(tvec,somaIKCa.vector[1:])
    title('KCa current (A)')
    xlabel('time (s)')
    ylabel('')
    print "Showing plots ..."
    show()
开发者ID:h-mayorquin,项目名称:camp_india_2016,代码行数:37,代码来源:Granule98.py

示例13: loadSTGNeuroML_L123

def loadSTGNeuroML_L123(filename):
    neuromlR = NeuroML()
    ## readNeuroMLFromFile below returns:
    # This returns
    # populationDict = {
    #     'populationname1':('cellName',{('instanceid1'):moosecell, ... }) 
    #     , ... 
    #     }
    # (cellName and instanceid are strings, mooosecell is a moose.Neuron object instance)
    # and
    # projectionDict = { 
    #     'projName1':('source','target',[('syn_name1','pre_seg_path','post_seg_path')
    #     ,...]) 
    #     , ... 
    #     }
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename)
    soma1_path = populationDict['AB_PD'][1][0].path+'/Soma_0'
    soma1Vm = setupTable('somaVm',moose.Compartment(soma1_path),'Vm')
    soma2_path = populationDict['LP'][1][0].path+'/Soma_0'
    soma2Vm = setupTable('somaVm',moose.Compartment(soma2_path),'Vm')
    soma3_path = populationDict['PY'][1][0].path+'/Soma_0'
    soma3Vm = setupTable('somaVm',moose.Compartment(soma3_path),'Vm')

    # monitor channel current
    channel_path = soma1_path + '/KCa_STG'
    channel_Ik = setupTable('KCa_Ik',moose.element(channel_path),'Ik')
    # monitor Ca
    capool_path = soma1_path + '/CaPool_STG'
    capool_Ca = setupTable('CaPool_Ca',moose.element(capool_path),'Ca')

    # monitor synaptic current
    soma2 = moose.element(soma2_path)
    print "Children of",soma2_path,"are:"
    for child in soma2.children:
        print child.className, child.path
    if graded_syn:
        syn_path = soma2_path+'/DoubExpSyn_Ach__cells-0-_AB_PD_0-0-_Soma_0'
        syn = moose.element(syn_path)
    else:
        syn_path = soma2_path+'/DoubExpSyn_Ach'
        syn = moose.element(syn_path)
    syn_Ik = setupTable('DoubExpSyn_Ach_Ik',syn,'Ik')

    print "Reinit MOOSE ... "
    resetSim(['/elec',cells_path], simdt, plotdt, simmethod='ee')

    print "Running ... "
    moose.start(runtime)
    tvec = arange(0.0,runtime+2*plotdt,plotdt)
    tvec = tvec[ : soma1Vm.vector.size ]
    
    figure(facecolor='w')
    plot(tvec,soma1Vm.vector,label='AB_PD',color='g',linestyle='solid')
    plot(tvec,soma2Vm.vector,label='LP',color='r',linestyle='solid')
    plot(tvec,soma3Vm.vector,label='PY',color='b',linestyle='solid')
    legend()
    title('Soma Vm')
    xlabel('time (s)')
    ylabel('Voltage (V)')

    figure(facecolor='w')
    plot(tvec,channel_Ik.vector,color='b',linestyle='solid')
    title('KCa current; Ca conc')
    xlabel('time (s)')
    ylabel('Ik (Amp)')
    twinx()
    plot(tvec,capool_Ca.vector,color='r',linestyle='solid')
    ylabel('Ca (mol/m^3)')

    figure(facecolor='w')
    plot(tvec,syn_Ik.vector,color='b',linestyle='solid')    
    title('Ach syn current in '+soma2_path)
    xlabel('time (s)')
    ylabel('Isyn (S)')
    print "Showing plots ..."
    show()
开发者ID:csiki,项目名称:MOOSE,代码行数:77,代码来源:STG_net.py

示例14: loadRunSTGNeuroML_L123

def loadRunSTGNeuroML_L123(filename):
    'Loads and runs the pyloric rhythm generator from NeuroML files.'
    # for graded synapses, else NeuroML event-based are used
    from load_synapses import load_synapses
    moose.Neutral('/library')
    # set graded to False to use event based synapses
    #  if False, neuroml event-based synapses get searched for and loaded
    # True to load graded synapses
    graded_syn = True
    #graded_syn = False
    if graded_syn:
        load_synapses()

    neuromlR = NeuroML()
    ## readNeuroMLFromFile below returns:
    # This returns
    # populationDict = {
    #     'populationname1':('cellName',{('instanceid1'):moosecell, ... }) 
    #     , ... 
    #     }
    # (cellName and instanceid are strings, mooosecell is a moose.Neuron object instance)
    # and
    # projectionDict = { 
    #     'projName1':('source','target',[('syn_name1','pre_seg_path','post_seg_path')
    #     ,...]) 
    #     , ... 
    #     }
    populationDict, projectionDict = \
        neuromlR.readNeuroMLFromFile(filename)
    soma1_path = populationDict['AB_PD'][1][0].path+'/Soma_0'
    soma1Vm = setupTable('somaVm',moose.Compartment(soma1_path),'Vm')
    soma2_path = populationDict['LP'][1][0].path+'/Soma_0'
    soma2Vm = setupTable('somaVm',moose.Compartment(soma2_path),'Vm')
    soma3_path = populationDict['PY'][1][0].path+'/Soma_0'
    soma3Vm = setupTable('somaVm',moose.Compartment(soma3_path),'Vm')

    # monitor channel current
    channel_path = soma1_path + '/KCa_STG'
    channel_Ik = setupTable('KCa_Ik',moose.element(channel_path),'Ik')
    # monitor Ca
    capool_path = soma1_path + '/CaPool_STG'
    capool_Ca = setupTable('CaPool_Ca',moose.element(capool_path),'Ca')

    # monitor synaptic current
    soma2 = moose.element(soma2_path)
    print "Children of",soma2_path,"are:"
    for child in soma2.children:
        print child.className, child.path
    if graded_syn:
        syn_path = soma2_path+'/DoubExpSyn_Ach__cells-0-_AB_PD_0-0-_Soma_0'
        syn = moose.element(syn_path)
    else:
        syn_path = soma2_path+'/DoubExpSyn_Ach'
        syn = moose.element(syn_path)
    syn_Ik = setupTable('DoubExpSyn_Ach_Ik',syn,'Ik')

    print "Reinit MOOSE ... "
    resetSim(['/elec',cells_path], simdt, plotdt, simmethod='hsolve')

    print "Using graded synapses? = ", graded_syn
    print "Running model filename = ",filename," ... "
    moose.start(runtime)
    tvec = np.arange(0.0,runtime+2*plotdt,plotdt)
    tvec = tvec[ : soma1Vm.vector.size ]
    
    fig = plt.figure(facecolor='w',figsize=(10,6))
    axA = plt.subplot2grid((3,2),(0,0),rowspan=3,colspan=1,frameon=False)
    img = plt.imread( 'STG.png' )
    imgplot = axA.imshow( img )
    for tick in axA.get_xticklines():
        tick.set_visible(False)
    for tick in axA.get_yticklines():
        tick.set_visible(False)
    axA.set_xticklabels([])
    axA.set_yticklabels([])
    ax = plt.subplot2grid((3,2),(0,1),rowspan=1,colspan=1)
    ax.plot(tvec,soma1Vm.vector*1000,label='AB_PD',color='g',linestyle='solid')
    ax.set_xticklabels([])
    ax.set_ylabel('AB_PD (mV)')
    ax = plt.subplot2grid((3,2),(1,1),rowspan=1,colspan=1)
    ax.plot(tvec,soma2Vm.vector*1000,label='LP',color='r',linestyle='solid')
    ax.set_xticklabels([])
    ax.set_ylabel('LP (mV)')
    ax = plt.subplot2grid((3,2),(2,1),rowspan=1,colspan=1)
    ax.plot(tvec,soma3Vm.vector*1000,label='PY',color='b',linestyle='solid')
    ax.set_ylabel('PY (mV)')
    ax.set_xlabel('time (s)')
    fig.tight_layout()

    fig = plt.figure(facecolor='w')
    plt.plot(tvec,soma2Vm.vector*1000,label='LP',color='r',linestyle='solid')
    plt.plot(tvec,soma3Vm.vector*1000,label='PY',color='b',linestyle='solid')
    plt.legend()
    plt.xlabel('time (s)')
    plt.ylabel('Soma Vm (mV)')

    plt.figure(facecolor='w')
    plt.plot(tvec,channel_Ik.vector,color='b',linestyle='solid')
    plt.title('KCa current; Ca conc')
    plt.xlabel('time (s)')
#.........这里部分代码省略.........
开发者ID:2pysarthak,项目名称:moose-examples,代码行数:101,代码来源:STG_net.py

示例15: NeuroML

import sys
sys.path.append('.')
import moose
from moose.utils import *

from moose.neuroml.NeuroML import NeuroML

from pylab import *

SIMDT = 25e-6 # s
PLOTDT = 25e-6 # s
RUNTIME = 1.0 # s

injectmax = 2e-12 # Amperes

neuromlR = NeuroML()
neuromlR.readNeuroMLFromFile('cells_channels/CA1soma.morph.xml')
libcell = moose.Neuron('/library/CA1soma')
CA1Cellid = moose.copy(libcell,moose.Neutral('/cells'),'CA1')
CA1Cell = moose.Neuron(CA1Cellid)
#printCellTree(CA1Cell)

## edge-detect the spikes using spike-gen (table does not have edge detect)
spikeGen = moose.SpikeGen(CA1Cell.path+'/spikeGen')
spikeGen.threshold = -30e-3 # V
CA1CellSoma = moose.Compartment(CA1Cell.path+'/Seg0_soma_0_0')
CA1CellSoma.inject = 0 # by default the cell has a current injection
moose.connect(CA1CellSoma,'VmOut',spikeGen,'Vm')
## save spikes in table
table_path = moose.Neutral(CA1Cell.path+'/data').path
CA1CellSpikesTable = moose.Table(table_path+'/spikesTable')
开发者ID:2pysarthak,项目名称:moose-examples,代码行数:31,代码来源:FvsI_CA1.py


注:本文中的moose.neuroml.NeuroML.NeuroML类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。