本文整理汇总了Python中mnist.MNIST.load_training方法的典型用法代码示例。如果您正苦于以下问题:Python MNIST.load_training方法的具体用法?Python MNIST.load_training怎么用?Python MNIST.load_training使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mnist.MNIST
的用法示例。
在下文中一共展示了MNIST.load_training方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def __init__(self):
#Load MNIST datset
mnistData = MNIST('./mnistData')
self.imgTrain,self.lblTrain=mnistData.load_training()
#self.imgTrainSmpl=self.imgTrain[:50000]
self.imgTrainSmpl = [[2.5,2.4],[0.5,0.7],[2.2,2.9],[1.9,2.2],[3.1,3.0],[2.3,2.7],[2,1.6],[1,1.1],[1.5,1.6],[1.1,0.9]]
np.seterr(all='warn')
示例2: __init__
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def __init__(self,collect_gold_standard):
n_neighbors = 15
mndata = MNIST('/home/ggdhines/Databases/mnist')
training = mndata.load_training()
digits = range(0,10)
training_dict = {d:[] for d in digits}
for t_index,label in enumerate(training[1]):
training_dict[label].append(training[0][t_index])
weight = "distance"
self.clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weight)
pca = PCA(n_components=50)
self.T = pca.fit(training[0])
reduced_training = self.T.transform(training[0])
# print sum(pca.explained_variance_ratio_)
# clf.fit(training[0], training[1])
self.clf.fit(reduced_training, training[1])
self.transcribed_digits = {d:[] for d in digits}
self.collect_gold_standard = collect_gold_standard
self.cells_to_process = []
self.completed_cells = []
示例3: load_data
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def load_data(dataset="mnist_small", center=False):
'''
@param dataset: The dataset to load
@param random_state: random state to control random parameter
Load a specified dataset currently only
"mnist_small" and "mnist" are supported
'''
if (dataset == "mnist_small"):
X_train = np.loadtxt("./mldata/mnist_small/X_train", delimiter=",").reshape(1540,64)
X_test = np.loadtxt("./mldata/mnist_small/X_test", delimiter=",").reshape(257,64)
y_train = np.loadtxt("./mldata/mnist_small/y_train", delimiter=",")
y_test = np.loadtxt("./mldata/mnist_small/y_test", delimiter=",")
X_train = X_train[:,:,np.newaxis]
X_test = X_test[:,:,np.newaxis]
elif dataset == "mnist":
mndata = MNIST('./mldata/mnist')
X_train, y_train = map(np.array, mndata.load_training())
X_test, y_test = map(np.array, mndata.load_testing())
X_train = X_train/255.0
X_test = X_test/255.0
X_train = X_train[:,:,np.newaxis]
X_test = X_test[:,:,np.newaxis]
elif dataset == "cifar":
(X_train, y_train), (X_test, y_test) = load_cifar()
else:
raise Exception("Datset not found")
return (X_train, y_train), (X_test, y_test)
示例4: importMNIST
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def importMNIST(folder,resolution,classes,amount,signals):
print 'importing MNIST data...'
if os.path.isfile('saved_DY.pkl'):
print 'found file'
f = open('saved_DY.pkl','r')
D = pickle.load(f)
D_labels = pickle.load(f)
Y = pickle.load(f)
Y_labels = pickle.load(f)
return np.matrix(D),D_labels,np.matrix(Y),Y_labels
mndata = MNIST(folder)
train_ims,train_labels = mndata.load_training()
print 'training loaded'
test_ims,test_labels = mndata.load_testing()
print 'testing loaded'
training_samples = resize(np.array(train_ims),resolution)
training_labels = np.array(train_labels)
D,D_labels = organize(training_samples,training_labels,classes,amount)
print 'dictionary, D, made'
random_idx = np.array(np.random.permutation(10000))[0:signals] #10000 is total signals avail
Y = (resize(np.array(test_ims),resolution))[:,random_idx]
Y_labels = np.array(test_labels)[random_idx]
print 'signals, Y, made'
saveToFile(D,D_labels,Y,Y_labels)
return np.matrix(D),D_labels,np.matrix(Y),Y_labels
示例5: load_dataset
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def load_dataset():
mndata = MNIST("./data/")
X_train, labels_train = map(np.array, mndata.load_training())
X_test, labels_test = map(np.array, mndata.load_testing())
X_train = X_train / 255.0
X_test = X_test / 255.0
X_train = X_train[:, :, np.newaxis]
X_test = X_test[:, :, np.newaxis]
return (X_train, labels_train), (X_test, labels_test)
示例6: __init__
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def __init__(self):
Classifier.__init__(self)
self.classifier = svm.SVC(gamma=0.001,probability=True)
mndata = MNIST('/home/ggdhines/Databases/mnist')
training = mndata.load_training()
self.classifier.fit(training[0], training[1])
示例7: load
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def load(self,pixels_per_cell = (8,8),cells_per_block=(3,3),orientations=9):
'''
Generates a Data Set
Parameters: None
Returns: train_set - Training Set of 10000 images
train_labels - Training Set Labels of corresponding images
test_set - Test Set of 10000 images
test_labels - Test Set Labels of corresponding images
'''
mn = MNIST('./data')
train_raw = mn.load_training()
test_raw = mn.load_testing()
print "Loaded Raw images"
learning_set = []
Boom = {}
for i in range(10):
Boom[str(i)] = []
for i in range(0,60000):
Boom[str(train_raw[1][i])].append(train_raw[0][i])
for i in range(0,10000):
Boom[str(test_raw[1][i])].append(test_raw[0][i])
t = datetime.now().microsecond
random.seed(t)
[random.shuffle(Boom[str(i)]) for i in range(10)]
print "Choosing 20000 training images uniformly randomly"
# Descriptor Generator
for l in range(10):
for i in range(0,2000):
img = np.array(Boom[str(l)][i])
img.shape = (28,28)
fd, hog_image = hog(img, orientations=orientations, pixels_per_cell=pixels_per_cell,cells_per_block=cells_per_block, visualise=True)
learning_set.append([fd,l])
print "Data Points now chosen and Generated HOG descriptors for them"
t = datetime.now().microsecond
random.seed(t)
print "Shuffling Chosen Data Set"
random.shuffle(learning_set)
for i in range(20000):
self.learning_set.append(learning_set[i][0])
self.learning_set_labels.append(learning_set[i][1])
print "Data Loading and Distribution Succesfully done"
self.train_set = self.learning_set[:10000]
self.train_labels = self.learning_set_labels[:10000]
self.test_set = self.learning_set[10000:20000]
self.test_labels = self.learning_set_labels[10000:20000]
示例8: load_data
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def load_data(datadir, is_training=False):
mn = MNIST(datadir)
if is_training:
img, label = mn.load_training()
else:
img, label = mn.load_testing()
return img, label
示例9: loaddata
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def loaddata():
#Loading mnist data using python-mnist library
mnLoader = MNIST('asgndata/mnist')
data1 = mnLoader.load_training() # train data
data2 = mnLoader.load_testing() # test data
features = np.array(data1[0]+data2[0], 'int16')
labels = np.array(data1[1]+data2[1], 'int')
X_train, y_train, X_test, y_test = preprocessData(features, labels)
return X_train, y_train, X_test, y_test
示例10: __init__
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def __init__(self,k):
#Define k value
self.k=k
#Load MNIST datset
mnistData=MNIST('./mnistData')
self.imgTrain,self.lblTrain=mnistData.load_training()
self.imgTest,self.lblTest=mnistData.load_testing()
#Initialize the random centroids
self.imgCen=[]
for c in xrange(self.k):
self.imgCen.append([random.randint(0,255) for d in xrange(784)])
示例11: MNISTDataset
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
class MNISTDataset(Dataset):
def __init__(self, path):
self.mndata = MNIST(path)
self.images, self.labels = self.mndata.load_training()
def nth_case(self, n):
return self.images[n], bitvec(self.labels[n])
@property
def size(self):
return len(self.images)
示例12: train_rls
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def train_rls():
mndata = MNIST("./data")
X_train, Y_train = mndata.load_training()
X_test, Y_test = mndata.load_testing()
X_train, X_test = np.array(X_train), np.array(X_test)
#One-vs-all mapping
Y_train = ova(Y_train)
Y_test = ova(Y_test)
#Train greedy RLS, select 50 features
cb = Callback(X_test, Y_test)
learner = GreedyRLS(X_train, Y_train, 50, callbackfun=cb)
print("Selected features " +str(learner.selected))
示例13: run
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def run():
TorchModel = PyTorchHelpers.load_lua_class('torch_model.lua', 'TorchModel')
torchModel = TorchModel(backend, 28, 10)
mndata = MNIST('../../data/mnist')
imagesList, labelsList = mndata.load_training()
labels = np.array(labelsList, dtype=np.uint8)
images = np.array(imagesList, dtype=np.float32)
labels += 1 # since torch/lua labels are 1-based
N = labels.shape[0]
print('loaded mnist training data')
if numTrain > 0:
N = min(N, numTrain)
print('numExamples N', N)
numBatches = N // batchSize
for epoch in range(numEpochs):
epochLoss = 0
epochNumRight = 0
for b in range(numBatches):
res = torchModel.trainBatch(
learningRate,
images[b * batchSize:(b+1) * batchSize],
labels[b * batchSize:(b+1) * batchSize])
# print('res', res)
numRight = res['numRight']
loss = res['loss']
epochNumRight += numRight
epochLoss += loss
print('epoch ' + str(epoch) + ' batch ' + str(b) + ' accuracy: ' + str(numRight * 100.0 / batchSize) + '%')
print('epoch ' + str(epoch) + ' accuracy: ' + str(epochNumRight * 100.0 / N) + '%')
print('finished training')
print('loading test data...')
imagesList, labelsList = mndata.load_testing()
labels = np.array(labelsList, dtype=np.uint8)
images = np.array(imagesList, dtype=np.float32)
labels += 1 # since torch/lua labels are 1-based
N = labels.shape[0]
print('loaded mnist testing data')
numBatches = N // batchSize
epochLoss = 0
epochNumRight = 0
for b in range(numBatches):
predictions = torchModel.predict(images[b * batchSize:(b+1) * batchSize]).asNumpyTensor().reshape(batchSize)
labelsBatch = labels[b * batchSize:(b+1) * batchSize]
numRight = (predictions == labelsBatch).sum()
epochNumRight += numRight
print('test results: accuracy: ' + str(epochNumRight * 100.0 / N) + '%')
示例14: run
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def run(args):
nn_args = {}
if args.output_activation:
activation_class = getattr(activation_functions, args.output_activation)
nn_args['output_activation'] = activation_class()
nn = Network(args.shape, seed=42, **nn_args)
print "Loading the training data"
mndata = MNIST(args.training_data)
training_data, training_labels = mndata.load_training()
training_data = convert_training_data(training_data)
training_labels = convert_number_labels_to_vectors(training_labels)
fitted, epochs = nn.SGD(training_data, training_labels,
epochs=args.epochs,
mini_batch_size=args.mini_batch_size,
eta=args.eta,
save_history=args.save_epochs)
if args.testing_data:
print "Testing data"
test_data, test_labels = mndata.load_testing()
test_data = convert_training_data(test_data)
# For evaluation, we put the index of the label
# with the argmax
evaluation = fitted.evaluate(test_data, test_labels,
evaluator=np.argmax)
print evaluation
if args.save:
label_dir = mkdir_or_temp(args.save)
fitted_path = "{}/nn.pkl".format(label_dir)
with open(fitted_path, 'wb') as handle:
pickle.dump(fitted, handle)
if epochs is not None:
for i, epoch in enumerate(epochs):
epoch_path = '{}/nn_epoch_{}.pkl'.format(label_dir, i)
with open(epoch_path, 'wb') as handle:
pickle.dump(epoch, handle)
print "Saved epoch {} to {}".format(i, epoch_path)
示例15: main
# 需要导入模块: from mnist import MNIST [as 别名]
# 或者: from mnist.MNIST import load_training [as 别名]
def main(kernel):
print "Loading the data"
mn = MNIST(DATA_PATH)
test_img, test_label = mn.load_testing()
train_img, train_label = mn.load_training()
train_img = np.array(train_img[:SIZE_TRAIN])
train_label = np.array(train_label[:SIZE_TRAIN])
test_img = np.array(test_img[:SIZE_TEST])
test_label = np.array(test_label[:SIZE_TEST])
print "Finished loading the data"
# Create a classifier: a support vector classifier
if kernel == 'rbf':
print "Training with RBF kernel - Might take a few minutes"
classifier = svm.SVC(C=10, gamma=5e-7, kernel='rbf')
elif kernel == 'linear':
print "Training with Linear kernel - Might take a few minutes"
classifier = svm.SVC(C=1e-6, kernel='linear')
elif kernel == 'poly':
print "Training with Polynomial kernel - Might take a few minutes"
#classifier = svm.SVC(C=10, gamma=1e-7, kernel='poly', degree=2)
#classifier = svm.SVC(C=10, gamma=1e-6, kernel='poly', degree=3)
classifier = svm.SVC(C=10, gamma=1e-6, kernel='poly', degree=4)
# We learn the digits on the first half of the digits
classifier.fit(train_img, train_label)
print "Classifying - Might take a few minutes"
predicted = classifier.predict(test_img)
print predicted
cm = metrics.confusion_matrix(test_label, predicted)
print("Classification report for classifier %s:\n%s\n"% (classifier, metrics.classification_report(test_label, predicted)))
print("Confusion matrix:\n%s" % cm)
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.figure()
plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')
print "Result: %s"%(np.trace(cm_normalized)/10)