当前位置: 首页>>代码示例>>Python>>正文


Python AverageTFR.copy方法代码示例

本文整理汇总了Python中mne.time_frequency.tfr.AverageTFR.copy方法的典型用法代码示例。如果您正苦于以下问题:Python AverageTFR.copy方法的具体用法?Python AverageTFR.copy怎么用?Python AverageTFR.copy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.time_frequency.tfr.AverageTFR的用法示例。


在下文中一共展示了AverageTFR.copy方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_add_channels

# 需要导入模块: from mne.time_frequency.tfr import AverageTFR [as 别名]
# 或者: from mne.time_frequency.tfr.AverageTFR import copy [as 别名]
def test_add_channels():
    """Test tfr splitting / re-appending channel types."""
    data = np.zeros((6, 2, 3))
    times = np.array([.1, .2, .3])
    freqs = np.array([.10, .20])
    info = mne.create_info(
        ['MEG 001', 'MEG 002', 'MEG 003', 'EEG 001', 'EEG 002', 'STIM 001'],
        1000., ['mag', 'mag', 'mag', 'eeg', 'eeg', 'stim'])
    tfr = AverageTFR(info, data=data, times=times, freqs=freqs,
                     nave=20, comment='test', method='crazy-tfr')
    tfr_eeg = tfr.copy().pick_types(meg=False, eeg=True)
    tfr_meg = tfr.copy().pick_types(meg=True)
    tfr_stim = tfr.copy().pick_types(meg=False, stim=True)
    tfr_eeg_meg = tfr.copy().pick_types(meg=True, eeg=True)
    tfr_new = tfr_meg.copy().add_channels([tfr_eeg, tfr_stim])
    assert all(ch in tfr_new.ch_names
               for ch in tfr_stim.ch_names + tfr_meg.ch_names)
    tfr_new = tfr_meg.copy().add_channels([tfr_eeg])

    assert all(ch in tfr_new.ch_names
               for ch in tfr.ch_names if ch != 'STIM 001')
    assert_array_equal(tfr_new.data, tfr_eeg_meg.data)
    assert all(ch not in tfr_new.ch_names for ch in tfr_stim.ch_names)

    # Now test errors
    tfr_badsf = tfr_eeg.copy()
    tfr_badsf.info['sfreq'] = 3.1415927
    tfr_eeg = tfr_eeg.crop(-.1, .1)

    pytest.raises(RuntimeError, tfr_meg.add_channels, [tfr_badsf])
    pytest.raises(AssertionError, tfr_meg.add_channels, [tfr_eeg])
    pytest.raises(ValueError, tfr_meg.add_channels, [tfr_meg])
    pytest.raises(TypeError, tfr_meg.add_channels, tfr_badsf)
开发者ID:kambysese,项目名称:mne-python,代码行数:35,代码来源:test_tfr.py

示例2: test_plot_joint

# 需要导入模块: from mne.time_frequency.tfr import AverageTFR [as 别名]
# 或者: from mne.time_frequency.tfr.AverageTFR import copy [as 别名]
def test_plot_joint():
    """Test TFR joint plotting."""
    raw = read_raw_fif(raw_fname)
    times = np.linspace(-0.1, 0.1, 200)
    n_freqs = 3
    nave = 1
    rng = np.random.RandomState(42)
    data = rng.randn(len(raw.ch_names), n_freqs, len(times))
    tfr = AverageTFR(raw.info, data, times, np.arange(n_freqs), nave)

    topomap_args = {'res': 8, 'contours': 0, 'sensors': False}

    for combine in ('mean', 'rms', None):
        tfr.plot_joint(title='auto', colorbar=True,
                       combine=combine, topomap_args=topomap_args)
        plt.close('all')

    # check various timefreqs
    for timefreqs in (
            {(tfr.times[0], tfr.freqs[1]): (0.1, 0.5),
             (tfr.times[-1], tfr.freqs[-1]): (0.2, 0.6)},
            [(tfr.times[1], tfr.freqs[1])]):
        tfr.plot_joint(timefreqs=timefreqs, topomap_args=topomap_args)
        plt.close('all')

    # test bad timefreqs
    timefreqs = ([(-100, 1)], tfr.times[1], [1],
                 [(tfr.times[1], tfr.freqs[1], tfr.freqs[1])])
    for these_timefreqs in timefreqs:
        pytest.raises(ValueError, tfr.plot_joint, these_timefreqs)

    # test that the object is not internally modified
    tfr_orig = tfr.copy()
    tfr.plot_joint(baseline=(0, None), exclude=[tfr.ch_names[0]],
                   topomap_args=topomap_args)
    plt.close('all')
    assert_array_equal(tfr.data, tfr_orig.data)
    assert set(tfr.ch_names) == set(tfr_orig.ch_names)
    assert set(tfr.times) == set(tfr_orig.times)

    # test tfr with picked channels
    tfr.pick_channels(tfr.ch_names[:-1])
    tfr.plot_joint(title='auto', colorbar=True, topomap_args=topomap_args)
开发者ID:kambysese,项目名称:mne-python,代码行数:45,代码来源:test_tfr.py


注:本文中的mne.time_frequency.tfr.AverageTFR.copy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。