当前位置: 首页>>代码示例>>Python>>正文


Python cluster_level.permutation_cluster_1samp_test函数代码示例

本文整理汇总了Python中mne.stats.cluster_level.permutation_cluster_1samp_test函数的典型用法代码示例。如果您正苦于以下问题:Python permutation_cluster_1samp_test函数的具体用法?Python permutation_cluster_1samp_test怎么用?Python permutation_cluster_1samp_test使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了permutation_cluster_1samp_test函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_permutation_step_down_p

def test_permutation_step_down_p():
    """Test cluster level permutations with step_down_p
    """
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return
    rng = np.random.RandomState(0)
    # subjects, time points, spatial points
    X = rng.randn(9, 2, 10)
    # add some significant points
    X[:, 0:2, 0:2] += 2  # span two time points and two spatial points
    X[:, 1, 5:9] += 0.5  # span four time points with 4x smaller amplitude
    thresh = 2
    # make sure it works when we use ALL points in step-down
    t, clusters, p, H0 = \
            permutation_cluster_1samp_test(X, threshold=thresh,
                                            step_down_p=1.0)
    # make sure using step-down will actually yield improvements sometimes
    t, clusters, p_old, H0 = \
            permutation_cluster_1samp_test(X, threshold=thresh,
                                           step_down_p=0.0)
    assert_equal(np.sum(p_old < 0.05), 1)  # just spatial cluster
    t, clusters, p_new, H0 = \
            permutation_cluster_1samp_test(X, threshold=thresh,
                                           step_down_p=0.05)
    assert_equal(np.sum(p_new < 0.05), 2)  # time one rescued
    assert_true(np.all(p_old >= p_new))
开发者ID:Anevar,项目名称:mne-python,代码行数:31,代码来源:test_cluster_level.py

示例2: test_cache_dir

def test_cache_dir():
    """Test use of cache dir
    """
    tempdir = _TempDir()
    orig_dir = os.getenv('MNE_CACHE_DIR', None)
    orig_size = os.getenv('MNE_MEMMAP_MIN_SIZE', None)
    rng = np.random.RandomState(0)
    X = rng.randn(9, 2, 10)
    try:
        os.environ['MNE_MEMMAP_MIN_SIZE'] = '1K'
        os.environ['MNE_CACHE_DIR'] = tempdir
        # Fix error for #1507: in-place when memmapping
        with catch_logging() as log_file:
            permutation_cluster_1samp_test(
                X, buffer_size=None, n_jobs=2, n_permutations=1,
                seed=0, stat_fun=ttest_1samp_no_p, verbose=False)
            # ensure that non-independence yields warning
            stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
            assert_true('independently' not in log_file.getvalue())
            with warnings.catch_warnings(record=True):  # independently
                permutation_cluster_1samp_test(
                    X, buffer_size=10, n_jobs=2, n_permutations=1,
                    seed=0, stat_fun=stat_fun, verbose=False)
            assert_true('independently' in log_file.getvalue())
    finally:
        if orig_dir is not None:
            os.environ['MNE_CACHE_DIR'] = orig_dir
        else:
            del os.environ['MNE_CACHE_DIR']
        if orig_size is not None:
            os.environ['MNE_MEMMAP_MIN_SIZE'] = orig_size
        else:
            del os.environ['MNE_MEMMAP_MIN_SIZE']
开发者ID:EmanuelaLiaci,项目名称:mne-python,代码行数:33,代码来源:test_cluster_level.py

示例3: test_cache_dir

def test_cache_dir():
    """Test use of cache dir
    """
    tempdir = _TempDir()
    orig_dir = os.getenv("MNE_CACHE_DIR", None)
    orig_size = os.getenv("MNE_MEMMAP_MIN_SIZE", None)
    rng = np.random.RandomState(0)
    X = rng.randn(9, 2, 10)
    log_file = op.join(tempdir, "log.txt")
    try:
        os.environ["MNE_MEMMAP_MIN_SIZE"] = "1K"
        os.environ["MNE_CACHE_DIR"] = tempdir
        # Fix error for #1507: in-place when memmapping
        permutation_cluster_1samp_test(
            X, buffer_size=None, n_jobs=2, n_permutations=1, seed=0, stat_fun=ttest_1samp_no_p, verbose=False
        )
        # ensure that non-independence yields warning
        stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
        set_log_file(log_file)
        permutation_cluster_1samp_test(
            X, buffer_size=10, n_jobs=2, n_permutations=1, seed=0, stat_fun=stat_fun, verbose=False
        )
        with open(log_file, "r") as fid:
            assert_true("independently" in "".join(fid.readlines()))
    finally:
        if orig_dir is not None:
            os.environ["MNE_CACHE_DIR"] = orig_dir
        else:
            del os.environ["MNE_CACHE_DIR"]
        if orig_size is not None:
            os.environ["MNE_MEMMAP_MIN_SIZE"] = orig_size
        else:
            del os.environ["MNE_MEMMAP_MIN_SIZE"]
        set_log_file(None)
开发者ID:YoheiOseki,项目名称:mne-python,代码行数:34,代码来源:test_cluster_level.py

示例4: test_tfce_thresholds

def test_tfce_thresholds():
    rng = np.random.RandomState(0)
    data = rng.randn(7, 10, 1) - 0.5

    # if tail==-1, step must also be negative
    assert_raises(ValueError, permutation_cluster_1samp_test, data, tail=-1,
                  threshold=dict(start=0, step=0.1))
    # this works (smoke test)
    permutation_cluster_1samp_test(data, tail=-1,
                                   threshold=dict(start=0, step=-0.1))

    # thresholds must be monotonically increasing
    assert_raises(ValueError, permutation_cluster_1samp_test, data, tail=1,
                  threshold=dict(start=1, step=-0.5))
开发者ID:HSMin,项目名称:mne-python,代码行数:14,代码来源:test_cluster_level.py

示例5: test_thresholds

def test_thresholds():
    """Test automatic threshold calculations."""
    # within subjects
    rng = np.random.RandomState(0)
    X = rng.randn(10, 1, 1) + 0.08
    want_thresh = -stats.t.ppf(0.025, len(X) - 1)
    assert 0.03 < stats.ttest_1samp(X[:, 0, 0], 0)[1] < 0.05
    my_fun = partial(ttest_1samp_no_p)
    with catch_logging() as log:
        with pytest.warns(RuntimeWarning, match='threshold is only valid'):
            out = permutation_cluster_1samp_test(X, stat_fun=my_fun,
                                                 verbose=True)
    log = log.getvalue()
    assert str(want_thresh)[:6] in log
    assert len(out[1]) == 1  # 1 cluster
    assert 0.03 < out[2] < 0.05
    # between subjects
    Y = rng.randn(10, 1, 1)
    Z = rng.randn(10, 1, 1) - 0.7
    X = [X, Y, Z]
    want_thresh = stats.f.ppf(1. - 0.05, 2, sum(len(a) for a in X) - len(X))
    p = stats.f_oneway(*X)[1]
    assert 0.03 < p < 0.05
    my_fun = partial(f_oneway)  # just to make the check fail
    with catch_logging() as log:
        with pytest.warns(RuntimeWarning, match='threshold is only valid'):
            out = permutation_cluster_test(X, tail=1, stat_fun=my_fun,
                                           verbose=True)
    log = log.getvalue()
    assert str(want_thresh)[:6] in log
    assert len(out[1]) == 1  # 1 cluster
    assert 0.03 < out[2] < 0.05
    with pytest.warns(RuntimeWarning, match='Ignoring argument "tail"'):
        permutation_cluster_test(X, tail=0)
开发者ID:SherazKhan,项目名称:mne-python,代码行数:34,代码来源:test_cluster_level.py

示例6: test_cluster_permutation_t_test

def test_cluster_permutation_t_test():
    """Test cluster level permutations T-test."""
    my_condition1 = condition1[:, :, None]  # to test 2D also
    T_obs, clusters, cluster_p_values, hist = permutation_cluster_1samp_test(
                                my_condition1, n_permutations=500, tail=0)
    assert_equal(np.sum(cluster_p_values < 0.05), 1)

    T_obs_pos, _, cluster_p_values_pos, _ = permutation_cluster_1samp_test(
                                my_condition1, n_permutations=500, tail=1,
                                threshold=1.67)

    T_obs_neg, _, cluster_p_values_neg, _ = permutation_cluster_1samp_test(
                                -my_condition1, n_permutations=500, tail=-1,
                                threshold=-1.67)
    assert_array_equal(T_obs_pos, -T_obs_neg)
    assert_array_equal(cluster_p_values_pos < 0.05,
                       cluster_p_values_neg < 0.05)
开发者ID:sudo-nim,项目名称:mne-python,代码行数:17,代码来源:test_cluster_level.py

示例7: test_cluster_permutation_t_test

def test_cluster_permutation_t_test():
    """Test cluster level permutations T-test
    """
    condition1_1d, condition2_1d, condition1_2d, condition2_2d = \
        _get_conditions()

    # use a very large sigma to make sure Ts are not independent
    stat_funs = [ttest_1samp_no_p,
                 partial(ttest_1samp_no_p, sigma=1e-1)]

    for stat_fun in stat_funs:
        for condition1 in (condition1_1d, condition1_2d):
            # these are so significant we can get away with fewer perms
            T_obs, clusters, cluster_p_values, hist =\
                permutation_cluster_1samp_test(condition1, n_permutations=100,
                                               tail=0, seed=1,
                                               buffer_size=None)
            assert_equal(np.sum(cluster_p_values < 0.05), 1)

            T_obs_pos, c_1, cluster_p_values_pos, _ =\
                permutation_cluster_1samp_test(condition1, n_permutations=100,
                                               tail=1, threshold=1.67, seed=1,
                                               stat_fun=stat_fun,
                                               buffer_size=None)

            T_obs_neg, _, cluster_p_values_neg, _ =\
                permutation_cluster_1samp_test(-condition1, n_permutations=100,
                                               tail=-1, threshold=-1.67,
                                               seed=1, stat_fun=stat_fun,
                                               buffer_size=None)
            assert_array_equal(T_obs_pos, -T_obs_neg)
            assert_array_equal(cluster_p_values_pos < 0.05,
                               cluster_p_values_neg < 0.05)

            # test with 2 jobs and buffer_size enabled
            buffer_size = condition1.shape[1] // 10
            T_obs_neg_buff, _, cluster_p_values_neg_buff, _ = \
                permutation_cluster_1samp_test(-condition1, n_permutations=100,
                                               tail=-1, threshold=-1.67,
                                               seed=1, n_jobs=2,
                                               stat_fun=stat_fun,
                                               buffer_size=buffer_size)

            assert_array_equal(T_obs_neg, T_obs_neg_buff)
            assert_array_equal(cluster_p_values_neg, cluster_p_values_neg_buff)
开发者ID:Anevar,项目名称:mne-python,代码行数:45,代码来源:test_cluster_level.py

示例8: test_cluster_permutation_t_test_with_connectivity

def test_cluster_permutation_t_test_with_connectivity():
    """Test cluster level permutations T-test with connectivity matrix."""
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return

    out = permutation_cluster_1samp_test(condition1, n_permutations=500)
    connectivity = grid_to_graph(1, condition1.shape[1])
    out_connectivity = permutation_cluster_1samp_test(condition1,
                             n_permutations=500, connectivity=connectivity)
    assert_array_equal(out[0], out_connectivity[0])
    for a, b in zip(out_connectivity[1], out[1]):
        assert_true(np.sum(out[0][a]) == np.sum(out[0][b]))
        assert_true(np.all(a[b]))
开发者ID:sudo-nim,项目名称:mne-python,代码行数:18,代码来源:test_cluster_level.py

示例9: test_permutation_large_n_samples

def test_permutation_large_n_samples():
    """Test that non-replacement works with large N."""
    X = np.random.RandomState(0).randn(72, 1) + 1
    for n_samples in (11, 72):
        tails = (0, 1) if n_samples <= 20 else (0,)
        for tail in tails:
            H0 = permutation_cluster_1samp_test(
                X[:n_samples], threshold=1e-4, tail=tail)[-1]
            assert H0.shape == (1024,)
            assert len(np.unique(H0)) >= 1024 - (H0 == 0).sum()
开发者ID:HSMin,项目名称:mne-python,代码行数:10,代码来源:test_cluster_level.py

示例10: test_permutation_connectivity_equiv

def test_permutation_connectivity_equiv():
    """Test cluster level permutations with and without connectivity
    """
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return
    rng = np.random.RandomState(0)
    # subjects, time points, spatial points
    X = rng.randn(7, 2, 10)
    # add some significant points
    X[:, 0:2, 0:2] += 10  # span two time points and two spatial points
    X[:, 1, 5:9] += 10  # span four time points
    max_steps = [1, 1, 1, 2]
    # This will run full algorithm in two ways, then the ST-algorithm in 2 ways
    # All of these should give the same results
    conns = [None, grid_to_graph(2, 10),
             grid_to_graph(1, 10), grid_to_graph(1, 10)]
    stat_map = None
    thresholds = [2, dict(start=0.5, step=0.5)]
    sig_counts = [2, 8]
    sdps = [0, 0.05, 0.05]
    ots = ['mask', 'mask', 'indices']
    for thresh, count in zip(thresholds, sig_counts):
        cs = None
        ps = None
        for max_step, conn in zip(max_steps, conns):
            for stat_fun in [ttest_1samp_no_p,
                             partial(ttest_1samp_no_p, sigma=1e-3)]:
                for sdp, ot in zip(sdps, ots):
                    t, clusters, p, H0 = \
                            permutation_cluster_1samp_test(X,
                                                           threshold=thresh,
                                                           connectivity=conn,
                                                           n_jobs=2,
                                                           max_step=max_step,
                                                           stat_fun=stat_fun,
                                                           step_down_p=sdp,
                                                           out_type=ot)
                    # make sure our output datatype is correct
                    if ot == 'mask':
                        assert_true(isinstance(clusters[0], np.ndarray))
                        assert_true(clusters[0].dtype == bool)
                        assert_array_equal(clusters[0].shape, X.shape[1:])
                    else:  # ot == 'indices'
                        assert_true(isinstance(clusters[0], tuple))

                    # make sure all comparisons were done; for TFCE, no perm
                    # should come up empty
                    if count == 8:
                        assert_true(not np.any(H0 == 0))
                    inds = np.where(p < 0.05)[0]
                    assert_true(len(inds) == count)
                    this_cs = [clusters[ii] for ii in inds]
                    this_ps = p[inds]
                    this_stat_map = np.zeros((2, 10), dtype=bool)
                    for ci, c in enumerate(this_cs):
                        if isinstance(c, tuple):
                            this_c = np.zeros((2, 10), bool)
                            for x, y in zip(c[0], c[1]):
                                this_stat_map[x, y] = True
                                this_c[x, y] = True
                            this_cs[ci] = this_c
                            c = this_c
                        this_stat_map[c] = True
                    if cs is None:
                        ps = this_ps
                        cs = this_cs
                    if stat_map is None:
                        stat_map = this_stat_map
                    assert_array_equal(ps, this_ps)
                    assert_true(len(cs) == len(this_cs))
                    for c1, c2 in zip(cs, this_cs):
                        assert_array_equal(c1, c2)
                    assert_array_equal(stat_map, this_stat_map)
开发者ID:Anevar,项目名称:mne-python,代码行数:78,代码来源:test_cluster_level.py

示例11: test_permutation_connectivity_equiv

def test_permutation_connectivity_equiv():
    """Test cluster level permutations with and without connectivity."""
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return
    rng = np.random.RandomState(0)
    # subjects, time points, spatial points
    n_time = 2
    n_space = 4
    X = rng.randn(6, n_time, n_space)
    # add some significant points
    X[:, :, 0:2] += 10  # span two time points and two spatial points
    X[:, 1, 3] += 20  # span one time point
    max_steps = [1, 1, 1, 2, 1]
    # This will run full algorithm in two ways, then the ST-algorithm in 2 ways
    # All of these should give the same results
    conns = [None,
             grid_to_graph(n_time, n_space),
             grid_to_graph(1, n_space),
             grid_to_graph(1, n_space),
             None]
    stat_map = None
    thresholds = [2, 2, 2, 2, dict(start=0.01, step=1.0)]
    sig_counts = [2, 2, 2, 2, 5]
    stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)

    cs = None
    ps = None
    for thresh, count, max_step, conn in zip(thresholds, sig_counts,
                                             max_steps, conns):
        t, clusters, p, H0 = \
            permutation_cluster_1samp_test(
                X, threshold=thresh, connectivity=conn, n_jobs=2,
                max_step=max_step, stat_fun=stat_fun)
        # make sure our output datatype is correct
        assert_true(isinstance(clusters[0], np.ndarray))
        assert_true(clusters[0].dtype == bool)
        assert_array_equal(clusters[0].shape, X.shape[1:])

        # make sure all comparisons were done; for TFCE, no perm
        # should come up empty
        inds = np.where(p < 0.05)[0]
        assert_equal(len(inds), count)
        if isinstance(thresh, dict):
            assert_equal(len(clusters), n_time * n_space)
            assert_true(np.all(H0 != 0))
            continue
        this_cs = [clusters[ii] for ii in inds]
        this_ps = p[inds]
        this_stat_map = np.zeros((n_time, n_space), dtype=bool)
        for ci, c in enumerate(this_cs):
            if isinstance(c, tuple):
                this_c = np.zeros((n_time, n_space), bool)
                for x, y in zip(c[0], c[1]):
                    this_stat_map[x, y] = True
                    this_c[x, y] = True
                this_cs[ci] = this_c
                c = this_c
            this_stat_map[c] = True
        if cs is None:
            ps = this_ps
            cs = this_cs
        if stat_map is None:
            stat_map = this_stat_map
        assert_array_equal(ps, this_ps)
        assert_true(len(cs) == len(this_cs))
        for c1, c2 in zip(cs, this_cs):
            assert_array_equal(c1, c2)
        assert_array_equal(stat_map, this_stat_map)
开发者ID:HSMin,项目名称:mne-python,代码行数:73,代码来源:test_cluster_level.py

示例12: test_cluster_permutation_t_test_with_connectivity

def test_cluster_permutation_t_test_with_connectivity():
    """Test cluster level permutations T-test with connectivity matrix."""
    try:
        try:
            from sklearn.feature_extraction.image import grid_to_graph
        except ImportError:
            from scikits.learn.feature_extraction.image import grid_to_graph
    except ImportError:
        return

    # we don't care about p-values in any of these, so do fewer permutations
    out = permutation_cluster_1samp_test(condition1_1d, n_permutations=50)
    connectivity = grid_to_graph(1, condition1_1d.shape[1])
    out_connectivity = permutation_cluster_1samp_test(condition1_1d,
                  n_permutations=50, connectivity=connectivity)
    assert_array_equal(out[0], out_connectivity[0])
    for a, b in zip(out_connectivity[1], out[1]):
        assert_true(np.sum(out[0][a]) == np.sum(out[0][b]))
        assert_true(np.all(a[b]))

    # test spatio-temporal with no time connectivity (repeat spatial pattern)
    connectivity_2 = sparse.coo_matrix(
        linalg.block_diag(connectivity.asfptype().todense(),
                          connectivity.asfptype().todense()))
    condition1_2 = np.concatenate((condition1_1d,
                                   condition1_1d), axis=1)

    out_connectivity_2 = permutation_cluster_1samp_test(condition1_2,
                    n_permutations=50, connectivity=connectivity_2)
    # make sure we were operating on the same values
    split = len(out[0])
    assert_array_equal(out[0], out_connectivity_2[0][:split])
    assert_array_equal(out[0], out_connectivity_2[0][split:])

    # make sure we really got 2x the number of original clusters
    n_clust_orig = len(out[1])
    assert_true(len(out_connectivity_2[1]) == 2 * n_clust_orig)

    # Make sure that we got the old ones back
    n_pts = condition1_1d.shape[1]
    data_1 = set([np.sum(out[0][b[:n_pts]]) for b in out[1]])
    data_2 = set([np.sum(out_connectivity_2[0][a[:n_pts]]) for a in
        out_connectivity_2[1][:]])
    assert_true(len(data_1.intersection(data_2)) == len(data_1))

    # now use the other algorithm
    condition1_3 = np.reshape(condition1_2, (40, 2, 350))
    out_connectivity_3 = spatio_temporal_cluster_1samp_test(
                             condition1_3, n_permutations=50,
                             connectivity=connectivity, max_step=0,
                             threshold=1.67, check_disjoint=True)
    # make sure we were operating on the same values
    split = len(out[0])
    assert_array_equal(out[0], out_connectivity_3[0][0])
    assert_array_equal(out[0], out_connectivity_3[0][1])

    # make sure we really got 2x the number of original clusters
    assert_true(len(out_connectivity_3[1]) == 2 * n_clust_orig)

    # Make sure that we got the old ones back
    data_1 = set([np.sum(out[0][b[:n_pts]]) for b in out[1]])
    data_2 = set([np.sum(out_connectivity_3[0][a[0], a[1]]) for a in
        out_connectivity_3[1]])
    assert_true(len(data_1.intersection(data_2)) == len(data_1))

    # test new versus old method old method
    out_connectivity_4 = spatio_temporal_cluster_1samp_test(
                             condition1_3, n_permutations=50,
                             connectivity=connectivity, max_step=2,
                             threshold=1.67)
    out_connectivity_5 = spatio_temporal_cluster_1samp_test(
                             condition1_3, n_permutations=50,
                             connectivity=connectivity, max_step=1,
                             threshold=1.67)
    # clutsers could be in a different order
    sums_4 = [np.sum(out_connectivity_4[0][a]) for a in out_connectivity_4[1]]
    sums_5 = [np.sum(out_connectivity_4[0][a]) for a in out_connectivity_5[1]]
    sums_4 = np.sort(sums_4)
    sums_5 = np.sort(sums_5)
    assert_array_almost_equal(sums_4, sums_5)
开发者ID:mshamalainen,项目名称:mne-python,代码行数:80,代码来源:test_cluster_level.py


注:本文中的mne.stats.cluster_level.permutation_cluster_1samp_test函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。