当前位置: 首页>>代码示例>>Python>>正文


Python inverse.make_inverse_operator函数代码示例

本文整理汇总了Python中mne.minimum_norm.inverse.make_inverse_operator函数的典型用法代码示例。如果您正苦于以下问题:Python make_inverse_operator函数的具体用法?Python make_inverse_operator怎么用?Python make_inverse_operator使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了make_inverse_operator函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_make_inverse_operator_fixed

def test_make_inverse_operator_fixed():
    """Test MNE inverse computation (fixed orientation)
    """
    fwd_op = read_forward_solution(fname_fwd, surf_ori=True)
    fwd_1 = read_forward_solution(fname_fwd, surf_ori=False, force_fixed=False)
    fwd_2 = read_forward_solution(fname_fwd, surf_ori=False, force_fixed=True)
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)

    # can't make depth-weighted fixed inv without surf ori fwd
    assert_raises(ValueError, make_inverse_operator, evoked.info, fwd_1,
                  noise_cov, depth=0.8, loose=None, fixed=True)
    # can't make fixed inv with depth weighting without free ori fwd
    assert_raises(ValueError, make_inverse_operator, evoked.info, fwd_2,
                  noise_cov, depth=0.8, loose=None, fixed=True)

    # compare to C solution w/fixed
    inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov, depth=0.8,
                                   loose=None, fixed=True)
    _compare_io(inv_op)
    inverse_operator_fixed = read_inverse_operator(fname_inv_fixed)
    _compare_inverses_approx(inverse_operator_fixed, inv_op, evoked, 2)
    # Inverse has 306 channels - 4 proj = 302
    assert_true(compute_rank_inverse(inverse_operator_fixed) == 302)

    # now compare to C solution
    # note that the forward solution must not be surface-oriented
    # to get equivalency (surf_ori=True changes the normals)
    inv_op = make_inverse_operator(evoked.info, fwd_2, noise_cov, depth=None,
                                   loose=None, fixed=True)
    inverse_operator_nodepth = read_inverse_operator(fname_inv_nodepth)
    _compare_inverses_approx(inverse_operator_nodepth, inv_op, evoked, 2)
    # Inverse has 306 channels - 4 proj = 302
    assert_true(compute_rank_inverse(inverse_operator_fixed) == 302)
开发者ID:Anevar,项目名称:mne-python,代码行数:34,代码来源:test_inverse.py

示例2: test_make_inverse_operator

def test_make_inverse_operator():
    """Test MNE inverse computation (precomputed and non-precomputed)."""
    # Test old version of inverse computation starting from forward operator
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)
    inverse_operator = read_inverse_operator(fname_inv)
    fwd_op = convert_forward_solution(read_forward_solution_meg(fname_fwd),
                                      surf_ori=True, copy=False)
    with catch_logging() as log:
        my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                          loose=0.2, depth=0.8,
                                          limit_depth_chs=False, verbose=True)
    log = log.getvalue()
    assert 'rank 302 (3 small eigenvalues omitted)' in log
    _compare_io(my_inv_op)
    assert_equal(inverse_operator['units'], 'Am')
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-2, atol=1e-5, depth_atol=1e-3)
    # Test MNE inverse computation starting from forward operator
    with catch_logging() as log:
        my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                          loose=0.2, depth=0.8, verbose=True)
    log = log.getvalue()
    assert 'rank 302 (3 small eigenvalues omitted)' in log
    _compare_io(my_inv_op)
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-3, atol=1e-5)
    assert ('dev_head_t' in my_inv_op['info'])
    assert ('mri_head_t' in my_inv_op)
开发者ID:palday,项目名称:mne-python,代码行数:29,代码来源:test_inverse.py

示例3: test_make_inverse_operator_loose

def test_make_inverse_operator_loose(evoked):
    """Test MNE inverse computation (precomputed and non-precomputed)."""
    # Test old version of inverse computation starting from forward operator
    noise_cov = read_cov(fname_cov)
    inverse_operator = read_inverse_operator(fname_inv)
    fwd_op = convert_forward_solution(read_forward_solution_meg(fname_fwd),
                                      surf_ori=True, copy=False)
    with catch_logging() as log:
        with pytest.deprecated_call():  # limit_depth_chs
            my_inv_op = make_inverse_operator(
                evoked.info, fwd_op, noise_cov, loose=0.2, depth=0.8,
                limit_depth_chs=False, verbose=True)
    log = log.getvalue()
    assert 'MEG: rank 302 computed' in log
    assert 'limit = 1/%d' % fwd_op['nsource'] in log
    _compare_io(my_inv_op)
    assert_equal(inverse_operator['units'], 'Am')
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-2, atol=1e-5, depth_atol=1e-3)
    # Test MNE inverse computation starting from forward operator
    with catch_logging() as log:
        my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                          loose='auto', depth=0.8,
                                          fixed=False, verbose=True)
    log = log.getvalue()
    assert 'MEG: rank 302 computed from 305' in log
    _compare_io(my_inv_op)
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-3, atol=1e-5)
    assert ('dev_head_t' in my_inv_op['info'])
    assert ('mri_head_t' in my_inv_op)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:31,代码来源:test_inverse.py

示例4: test_make_inverse_operator_fixed

    def test_make_inverse_operator_fixed(self):
        """Test MNE inverse computation w/ fixed orientation (& no depth
        weighting)
        """
        # can't make fixed inv without surf ori fwd
        assert_raises(ValueError, make_inverse_operator, evoked.info,
                      self.fwd_1, noise_cov, depth=0.8, loose=None, fixed=True)
        # can't make fixed inv with depth weighting without free ori fwd
        assert_raises(ValueError, make_inverse_operator, evoked.info,
                      self.fwd_2, noise_cov, depth=0.8, loose=None, fixed=True)
        inv_op = make_inverse_operator(evoked.info, self.fwd_op, noise_cov,
                                       depth=0.8, loose=None, fixed=True)
        _compare_io(inv_op)
        inverse_operator_fixed = read_inverse_operator(fname_inv_fixed)
        _compare_inverses_approx(inverse_operator_fixed, inv_op, evoked, 2)
        # Inverse has 306 channels - 4 proj = 302
        assert_true(compute_rank_inverse(inverse_operator_fixed) == 302)

        # Now without depth weighting, these should be equivalent
        inv_op = make_inverse_operator(evoked.info, self.fwd_2, noise_cov,
                                       depth=None, loose=None, fixed=True)
        inv_2 = make_inverse_operator(evoked.info, self.fwd_op, noise_cov,
                                      depth=None, loose=None, fixed=True)
        _compare_inverses_approx(inv_op, inv_2, evoked, 2)
        _compare_io(inv_op)
        # now compare to C solution
        inverse_operator_nodepth = read_inverse_operator(fname_inv_nodepth)
        _compare_inverses_approx(inverse_operator_nodepth, inv_op, evoked, 2)
        # Inverse has 306 channels - 4 proj = 302
        assert_true(compute_rank_inverse(inverse_operator_fixed) == 302)
开发者ID:mshamalainen,项目名称:mne-python,代码行数:30,代码来源:test_inverse.py

示例5: test_make_inverse_operator_free

def test_make_inverse_operator_free():
    """Test MNE inverse computation (free orientation)
    """
    fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
    fwd_1 = read_forward_solution_meg(fname_fwd, surf_ori=False,
                                      force_fixed=False)
    fwd_2 = read_forward_solution_meg(fname_fwd, surf_ori=False,
                                      force_fixed=True)
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)

    # can't make free inv with fixed fwd
    assert_raises(ValueError, make_inverse_operator, evoked.info, fwd_2,
                  noise_cov, depth=None)

    # for free ori inv, loose=None and loose=1 should be equivalent
    inv_1 = make_inverse_operator(evoked.info, fwd_op, noise_cov, loose=None)
    inv_2 = make_inverse_operator(evoked.info, fwd_op, noise_cov, loose=1)
    _compare_inverses_approx(inv_1, inv_2, evoked, 0, 1e-2)

    # for depth=None, surf_ori of the fwd should not matter
    inv_3 = make_inverse_operator(evoked.info, fwd_op, noise_cov, depth=None,
                                  loose=None)
    inv_4 = make_inverse_operator(evoked.info, fwd_1, noise_cov, depth=None,
                                  loose=None)
    _compare_inverses_approx(inv_3, inv_4, evoked, 0, 1e-2)
开发者ID:cmoutard,项目名称:mne-python,代码行数:26,代码来源:test_inverse.py

示例6: test_warn_inverse_operator

def test_warn_inverse_operator():
    """Test MNE inverse warning without average EEG projection."""
    bad_info = copy.deepcopy(_get_evoked().info)
    bad_info['projs'] = list()
    fwd_op = read_forward_solution(fname_fwd, surf_ori=True)
    noise_cov = read_cov(fname_cov)
    with warnings.catch_warnings(record=True) as w:
        make_inverse_operator(bad_info, fwd_op, noise_cov)
    assert_equal(len(w), 1)
开发者ID:hoechenberger,项目名称:mne-python,代码行数:9,代码来源:test_inverse.py

示例7: test_warn_inverse_operator

def test_warn_inverse_operator(evoked, noise_cov):
    """Test MNE inverse warning without average EEG projection."""
    bad_info = evoked.info
    bad_info['projs'] = list()
    fwd_op = convert_forward_solution(read_forward_solution(fname_fwd),
                                      surf_ori=True, copy=False)
    noise_cov['projs'].pop(-1)  # get rid of avg EEG ref proj
    with pytest.warns(RuntimeWarning, match='reference'):
        make_inverse_operator(bad_info, fwd_op, noise_cov)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:9,代码来源:test_inverse.py

示例8: test_inverse_operator_channel_ordering

def test_inverse_operator_channel_ordering():
    """Test MNE inverse computation is immune to channel reorderings
    """
    # These are with original ordering
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)

    fwd_orig = make_forward_solution(evoked.info, fname_trans, src_fname,
                                     fname_bem, eeg=True, mindist=5.0)
    fwd_orig = convert_forward_solution(fwd_orig, surf_ori=True)
    inv_orig = make_inverse_operator(evoked.info, fwd_orig, noise_cov,
                                     loose=0.2, depth=0.8,
                                     limit_depth_chs=False)
    stc_1 = apply_inverse(evoked, inv_orig, lambda2, "dSPM")

    # Assume that a raw reordering applies to both evoked and noise_cov,
    # so we don't need to create those from scratch. Just reorder them,
    # then try to apply the original inverse operator
    new_order = np.arange(len(evoked.info['ch_names']))
    randomiser = np.random.RandomState(42)
    randomiser.shuffle(new_order)
    evoked.data = evoked.data[new_order]
    evoked.info['chs'] = [evoked.info['chs'][n] for n in new_order]
    evoked.info._update_redundant()
    evoked.info._check_consistency()

    cov_ch_reorder = [c for c in evoked.info['ch_names']
                      if (c in noise_cov.ch_names)]

    new_order_cov = [noise_cov.ch_names.index(name) for name in cov_ch_reorder]
    noise_cov['data'] = noise_cov.data[np.ix_(new_order_cov, new_order_cov)]
    noise_cov['names'] = [noise_cov['names'][idx] for idx in new_order_cov]

    fwd_reorder = make_forward_solution(evoked.info, fname_trans, src_fname,
                                        fname_bem, eeg=True, mindist=5.0)
    fwd_reorder = convert_forward_solution(fwd_reorder, surf_ori=True)
    inv_reorder = make_inverse_operator(evoked.info, fwd_reorder, noise_cov,
                                        loose=0.2, depth=0.8,
                                        limit_depth_chs=False)

    stc_2 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")

    assert_equal(stc_1.subject, stc_2.subject)
    assert_array_equal(stc_1.times, stc_2.times)
    assert_allclose(stc_1.data, stc_2.data, rtol=1e-5, atol=1e-5)
    assert_true(inv_orig['units'] == inv_reorder['units'])

    # Reload with original ordering & apply reordered inverse
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)

    stc_3 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")
    assert_allclose(stc_1.data, stc_3.data, rtol=1e-5, atol=1e-5)
开发者ID:hoechenberger,项目名称:mne-python,代码行数:53,代码来源:test_inverse.py

示例9: test_apply_inverse_operator

def test_apply_inverse_operator():
    """Test MNE inverse computation (precomputed and non-precomputed)
    """
    inverse_operator = read_inverse_operator(fname_inv)
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)

    # Test old version of inverse computation starting from forward operator
    fwd_op = read_forward_solution(fname_fwd, surf_ori=True)
    my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                      loose=0.2, depth=0.8,
                                      limit_depth_chs=False)
    _compare_io(my_inv_op)
    assert_true(inverse_operator['units'] == 'Am')
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked, 2,
                             check_depth=False)
    # Inverse has 306 channels - 4 proj = 302
    assert_true(compute_rank_inverse(inverse_operator) == 302)

    # Test MNE inverse computation starting from forward operator
    my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                      loose=0.2, depth=0.8)
    _compare_io(my_inv_op)
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked, 2)
    # Inverse has 306 channels - 4 proj = 302
    assert_true(compute_rank_inverse(inverse_operator) == 302)

    stc = apply_inverse(evoked, inverse_operator, lambda2, "MNE")
    assert_true(stc.subject == 'sample')
    assert_true(stc.data.min() > 0)
    assert_true(stc.data.max() < 10e-10)
    assert_true(stc.data.mean() > 1e-11)

    stc = apply_inverse(evoked, inverse_operator, lambda2, "sLORETA")
    assert_true(stc.subject == 'sample')
    assert_true(stc.data.min() > 0)
    assert_true(stc.data.max() < 10.0)
    assert_true(stc.data.mean() > 0.1)

    stc = apply_inverse(evoked, inverse_operator, lambda2, "dSPM")
    assert_true(stc.subject == 'sample')
    assert_true(stc.data.min() > 0)
    assert_true(stc.data.max() < 35)
    assert_true(stc.data.mean() > 0.1)

    my_stc = apply_inverse(evoked, my_inv_op, lambda2, "dSPM")

    assert_true('dev_head_t' in my_inv_op['info'])
    assert_true('mri_head_t' in my_inv_op)

    assert_true(my_stc.subject == 'sample')
    assert_equal(stc.times, my_stc.times)
    assert_array_almost_equal(stc.data, my_stc.data, 2)
开发者ID:Anevar,项目名称:mne-python,代码行数:53,代码来源:test_inverse.py

示例10: test_inverse_operator_noise_cov_rank

def test_inverse_operator_noise_cov_rank():
    """Test MNE inverse operator with a specified noise cov rank."""
    fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)
    inv = make_inverse_operator(evoked.info, fwd_op, noise_cov, rank=64)
    assert (compute_rank_inverse(inv) == 64)

    fwd_op = read_forward_solution_eeg(fname_fwd, surf_ori=True)
    inv = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                rank=dict(eeg=20))
    assert (compute_rank_inverse(inv) == 20)
开发者ID:teonbrooks,项目名称:mne-python,代码行数:12,代码来源:test_inverse.py

示例11: test_inverse_operator_noise_cov_rank

def test_inverse_operator_noise_cov_rank(evoked, noise_cov):
    """Test MNE inverse operator with a specified noise cov rank."""
    fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
    with pytest.deprecated_call():  # rank int
        inv = make_inverse_operator(evoked.info, fwd_op, noise_cov, rank=64)
    assert (compute_rank_inverse(inv) == 64)
    inv = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                rank=dict(meg=64))
    assert (compute_rank_inverse(inv) == 64)

    fwd_op = read_forward_solution_eeg(fname_fwd, surf_ori=True)
    inv = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                rank=dict(eeg=20))
    assert (compute_rank_inverse(inv) == 20)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:14,代码来源:test_inverse.py

示例12: test_apply_mne_inverse_fixed_raw

def test_apply_mne_inverse_fixed_raw():
    """Test MNE with fixed-orientation inverse operator on Raw
    """
    raw = fiff.Raw(fname_raw)
    start = 3
    stop = 10
    _, times = raw[0, start:stop]
    label_lh = read_label(fname_label % 'Aud-lh')

    # create a fixed-orientation inverse operator
    fwd = read_forward_solution(fname_fwd, force_fixed=False, surf_ori=True)
    noise_cov = read_cov(fname_cov)
    inv_op = make_inverse_operator(raw.info, fwd, noise_cov,
                                   loose=None, depth=0.8, fixed=True)

    stc = apply_inverse_raw(raw, inv_op, lambda2, "dSPM",
                            label=label_lh, start=start, stop=stop, nave=1,
                            pick_ori=None, buffer_size=None)

    stc2 = apply_inverse_raw(raw, inv_op, lambda2, "dSPM",
                             label=label_lh, start=start, stop=stop, nave=1,
                             pick_ori=None, buffer_size=3)

    assert_true(stc.subject == 'sample')
    assert_true(stc2.subject == 'sample')
    assert_array_almost_equal(stc.times, times)
    assert_array_almost_equal(stc2.times, times)
    assert_array_almost_equal(stc.data, stc2.data)
开发者ID:Anevar,项目名称:mne-python,代码行数:28,代码来源:test_inverse.py

示例13: test_apply_inverse_sphere

def test_apply_inverse_sphere():
    """Test applying an inverse with a sphere model (rank-deficient)."""
    evoked = _get_evoked()
    evoked.pick_channels(evoked.ch_names[:306:8])
    evoked.info['projs'] = []
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    fwd = read_forward_solution(fname_fwd)
    vertices = [fwd['src'][0]['vertno'][::5],
                fwd['src'][1]['vertno'][::5]]
    stc = SourceEstimate(np.zeros((sum(len(v) for v in vertices), 1)),
                         vertices, 0., 1.)
    fwd = restrict_forward_to_stc(fwd, stc)
    fwd = make_forward_solution(evoked.info, fwd['mri_head_t'], fwd['src'],
                                sphere, mindist=5.)
    evoked = EvokedArray(fwd['sol']['data'].copy(), evoked.info)
    assert fwd['sol']['nrow'] == 39
    assert fwd['nsource'] == 101
    assert fwd['sol']['ncol'] == 303
    tempdir = _TempDir()
    temp_fname = op.join(tempdir, 'temp-inv.fif')
    inv = make_inverse_operator(evoked.info, fwd, cov, loose=1.)
    # This forces everything to be float32
    write_inverse_operator(temp_fname, inv)
    inv = read_inverse_operator(temp_fname)
    stc = apply_inverse(evoked, inv, method='eLORETA',
                        method_params=dict(eps=1e-2))
    # assert zero localization bias
    assert_array_equal(np.argmax(stc.data, axis=0),
                       np.repeat(np.arange(101), 3))
开发者ID:teonbrooks,项目名称:mne-python,代码行数:30,代码来源:test_inverse.py

示例14: test_make_inverse_operator_vector

def test_make_inverse_operator_vector():
    """Test MNE inverse computation (vector result)."""
    fwd_surf = read_forward_solution_meg(fname_fwd, surf_ori=True)
    fwd_fixed = read_forward_solution_meg(fname_fwd, surf_ori=False)
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)

    # Make different version of the inverse operator
    inv_1 = make_inverse_operator(evoked.info, fwd_fixed, noise_cov, loose=1)
    inv_2 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, depth=None,
                                  use_cps=True)
    inv_3 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, fixed=True,
                                  use_cps=True)
    inv_4 = make_inverse_operator(evoked.info, fwd_fixed, noise_cov,
                                  loose=.2, depth=None)

    # Apply the inverse operators and check the result
    for ii, inv in enumerate((inv_1, inv_2, inv_4)):
        # Don't do eLORETA here as it will be quite slow
        methods = ['MNE', 'dSPM', 'sLORETA'] if ii < 2 else ['MNE']
        for method in methods:
            stc = apply_inverse(evoked, inv, method=method)
            stc_vec = apply_inverse(evoked, inv, pick_ori='vector',
                                    method=method)
            assert_allclose(stc.data, stc_vec.magnitude().data)

    # Vector estimates don't work when using fixed orientations
    pytest.raises(RuntimeError, apply_inverse, evoked, inv_3,
                  pick_ori='vector')

    # When computing with vector fields, computing the difference between two
    # evokeds and then performing the inverse should yield the same result as
    # computing the difference between the inverses.
    evoked0 = read_evokeds(fname_data, condition=0, baseline=(None, 0))
    evoked0.crop(0, 0.2)
    evoked1 = read_evokeds(fname_data, condition=1, baseline=(None, 0))
    evoked1.crop(0, 0.2)
    diff = combine_evoked((evoked0, evoked1), [1, -1])
    stc_diff = apply_inverse(diff, inv_1, method='MNE')
    stc_diff_vec = apply_inverse(diff, inv_1, method='MNE', pick_ori='vector')
    stc_vec0 = apply_inverse(evoked0, inv_1, method='MNE', pick_ori='vector')
    stc_vec1 = apply_inverse(evoked1, inv_1, method='MNE', pick_ori='vector')
    assert_allclose(stc_diff_vec.data, (stc_vec0 - stc_vec1).data,
                    atol=1e-20)
    assert_allclose(stc_diff.data, (stc_vec0 - stc_vec1).magnitude().data,
                    atol=1e-20)
开发者ID:teonbrooks,项目名称:mne-python,代码行数:46,代码来源:test_inverse.py

示例15: test_make_inverse_operator_fixed

def test_make_inverse_operator_fixed():
    """Test MNE inverse computation (fixed orientation)."""
    fwd = read_forward_solution_meg(fname_fwd)
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)

    # can't make fixed inv with depth weighting without free ori fwd
    fwd_fixed = convert_forward_solution(fwd, force_fixed=True,
                                         use_cps=True)
    pytest.raises(ValueError, make_inverse_operator, evoked.info, fwd_fixed,
                  noise_cov, depth=0.8, fixed=True)

    # now compare to C solution
    # note that the forward solution must not be surface-oriented
    # to get equivalency (surf_ori=True changes the normals)
    with catch_logging() as log:
        inv_op = make_inverse_operator(  # test depth=0. alias for depth=None
            evoked.info, fwd, noise_cov, depth=0., fixed=True,
            use_cps=False, verbose=True)
    log = log.getvalue()
    assert 'rank 302 (3 small eigenvalues omitted)' in log
    assert 'EEG channels: 0' in repr(inv_op)
    assert 'MEG channels: 305' in repr(inv_op)
    del fwd_fixed
    inverse_operator_nodepth = read_inverse_operator(fname_inv_fixed_nodepth)
    # XXX We should have this but we don't (MNE-C doesn't restrict info):
    # assert 'EEG channels: 0' in repr(inverse_operator_nodepth)
    assert 'MEG channels: 305' in repr(inverse_operator_nodepth)
    _compare_inverses_approx(inverse_operator_nodepth, inv_op, evoked,
                             rtol=1e-5, atol=1e-4)
    # Inverse has 306 channels - 6 proj = 302
    assert (compute_rank_inverse(inverse_operator_nodepth) == 302)
    # Now with depth
    fwd_surf = convert_forward_solution(fwd, surf_ori=True)  # not fixed
    for kwargs, use_fwd in zip([dict(fixed=True), dict(loose=0.)],
                               [fwd, fwd_surf]):  # Should be equiv.
        inv_op_depth = make_inverse_operator(
            evoked.info, use_fwd, noise_cov, depth=0.8, use_cps=True,
            **kwargs)
        inverse_operator_depth = read_inverse_operator(fname_inv_fixed_depth)
        # Normals should be the adjusted ones
        assert_allclose(inverse_operator_depth['source_nn'],
                        fwd_surf['source_nn'][2::3], atol=1e-5)
        _compare_inverses_approx(inverse_operator_depth, inv_op_depth, evoked,
                                 rtol=1e-3, atol=1e-4)
开发者ID:palday,项目名称:mne-python,代码行数:45,代码来源:test_inverse.py


注:本文中的mne.minimum_norm.inverse.make_inverse_operator函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。