本文整理汇总了Python中mne.io.tests.test_raw._test_raw_reader函数的典型用法代码示例。如果您正苦于以下问题:Python _test_raw_reader函数的具体用法?Python _test_raw_reader怎么用?Python _test_raw_reader使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了_test_raw_reader函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_edf_data
def test_edf_data():
"""Test edf files"""
_test_raw_reader(read_raw_edf, input_fname=edf_path, stim_channel=None)
raw_py = read_raw_edf(edf_path, preload=True)
# Test saving and loading when annotations were parsed.
tempdir = _TempDir()
raw_file = op.join(tempdir, 'test-raw.fif')
raw_py.save(raw_file, overwrite=True, buffer_size_sec=1)
Raw(raw_file, preload=True)
edf_events = find_events(raw_py, output='step', shortest_event=0,
stim_channel='STI 014')
# onset, duration, id
events = [[0.1344, 0.2560, 2],
[0.3904, 1.0000, 2],
[2.0000, 0.0000, 3],
[2.5000, 2.5000, 2]]
events = np.array(events)
events[:, :2] *= 512 # convert time to samples
events = np.array(events, dtype=int)
events[:, 1] -= 1
events[events[:, 1] <= 0, 1] = 1
events[:, 1] += events[:, 0]
onsets = events[:, [0, 2]]
offsets = events[:, [1, 2]]
events = np.zeros((2 * events.shape[0], 3), dtype=int)
events[0::2, [0, 2]] = onsets
events[1::2, [0, 1]] = offsets
assert_array_equal(edf_events, events)
示例2: test_gdf2_data
def test_gdf2_data():
"""Test reading raw GDF 2.x files."""
raw = read_raw_edf(gdf2_path + '.gdf', eog=None, misc=None, preload=True)
picks = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
data, _ = raw[picks]
# This .mat was generated using the official biosig matlab package
mat = sio.loadmat(gdf2_path + '_biosig.mat')
data_biosig = mat['dat'] * 1e-6 # data are stored in microvolts
data_biosig = data_biosig[picks]
# Assert data are almost equal
assert_array_almost_equal(data, data_biosig, 8)
# Find events
events = find_events(raw, verbose=1)
events[:, 2] >>= 8 # last 8 bits are system events in biosemi files
assert_equal(events.shape[0], 2) # 2 events in file
assert_array_equal(events[:, 2], [20, 28])
# gh-5604
assert raw.info['meas_date'] == DATE_NONE
_test_raw_reader(read_raw_edf, input_fname=gdf2_path + '.gdf',
eog=None, misc=None)
示例3: test_eximia_nxe
def test_eximia_nxe():
"""Test reading Eximia NXE files"""
fname = op.join(data_path(), 'eximia', 'test_eximia.nxe')
raw = read_raw_eximia(fname, preload=True)
assert_true('RawEximia' in repr(raw))
_test_raw_reader(read_raw_eximia, fname=fname)
fname_mat = op.join(data_path(), 'eximia', 'test_eximia.mat')
mc = sio.loadmat(fname_mat)
m_data = mc['data']
m_header = mc['header']
assert_equal(raw._data.shape, m_data.shape)
assert_equal(m_header['Fs'][0, 0][0, 0], raw.info['sfreq'])
m_names = [x[0][0] for x in m_header['label'][0, 0]]
m_names = list(
map(lambda x: x.replace('GATE', 'GateIn').replace('TRIG', 'Trig'),
m_names))
assert_equal(raw.ch_names, m_names)
m_ch_types = [x[0][0] for x in m_header['chantype'][0, 0]]
m_ch_types = list(
map(lambda x: x.replace('unknown', 'stim').replace('trigger', 'stim'),
m_ch_types))
types_dict = {2: 'eeg', 3: 'stim', 202: 'eog'}
ch_types = [types_dict[raw.info['chs'][x]['kind']]
for x in range(len(raw.ch_names))]
assert_equal(ch_types, m_ch_types)
assert_array_equal(m_data, raw._data)
示例4: test_bdf_data
def test_bdf_data():
"""Test reading raw bdf files."""
raw_py = _test_raw_reader(read_raw_edf, input_fname=bdf_path,
eog=eog, misc=misc,
exclude=['M2', 'IEOG'])
assert len(raw_py.ch_names) == 71
raw_py = _test_raw_reader(read_raw_edf, input_fname=bdf_path,
montage=montage_path, eog=eog, misc=misc,
exclude=['M2', 'IEOG'])
assert len(raw_py.ch_names) == 71
assert 'RawEDF' in repr(raw_py)
picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
data_py, _ = raw_py[picks]
# this .mat was generated using the EEG Lab Biosemi Reader
raw_eeglab = loadmat(bdf_eeglab_path)
raw_eeglab = raw_eeglab['data'] * 1e-6 # data are stored in microvolts
data_eeglab = raw_eeglab[picks]
# bdf saved as a single, resolution to seven decimal points in matlab
assert_array_almost_equal(data_py, data_eeglab, 8)
# Manually checking that float coordinates are imported
assert (raw_py.info['chs'][0]['loc']).any()
assert (raw_py.info['chs'][25]['loc']).any()
assert (raw_py.info['chs'][63]['loc']).any()
示例5: test_gdf2_data
def test_gdf2_data():
"""Test reading raw GDF 2.x files."""
raw = read_raw_edf(gdf2_path + '.gdf', eog=None, misc=None, preload=True,
stim_channel='STATUS')
nchan = raw.info['nchan']
ch_names = raw.ch_names # Renamed STATUS -> STI 014.
picks = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
data, _ = raw[picks]
# This .mat was generated using the official biosig matlab package
mat = sio.loadmat(gdf2_path + '_biosig.mat')
data_biosig = mat['dat'] * 1e-6 # data are stored in microvolts
data_biosig = data_biosig[picks]
# Assert data are almost equal
assert_array_almost_equal(data, data_biosig, 8)
# Find events
events = find_events(raw, verbose=1)
events[:, 2] >>= 8 # last 8 bits are system events in biosemi files
assert_equal(events.shape[0], 2) # 2 events in file
assert_array_equal(events[:, 2], [20, 28])
with pytest.warns(RuntimeWarning, match='No events found'):
# header contains no events
raw = read_raw_edf(gdf2_path + '.gdf', stim_channel='auto')
assert_equal(nchan, raw.info['nchan']) # stim channel not constructed
assert_array_equal(ch_names[1:], raw.ch_names[1:])
# gh-5604
assert raw.info['meas_date'] == DATE_NONE
_test_raw_reader(read_raw_edf, input_fname=gdf2_path + '.gdf',
eog=None, misc=None, stim_channel='STATUS')
示例6: test_gdf_data
def test_gdf_data():
"""Test reading raw GDF 1.x files."""
with pytest.warns(RuntimeWarning, match='Overlapping events'):
raw = read_raw_edf(gdf1_path + '.gdf', eog=None,
misc=None, preload=True, stim_channel='auto')
picks = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
data, _ = raw[picks]
# this .npy was generated using the official biosig python package
raw_biosig = np.load(gdf1_path + '_biosig.npy')
raw_biosig = raw_biosig * 1e-6 # data are stored in microvolts
data_biosig = raw_biosig[picks]
# Assert data are almost equal
assert_array_almost_equal(data, data_biosig, 8)
# Test for stim channel
events = find_events(raw, shortest_event=1)
# The events are overlapping.
assert_array_equal(events[:, 0], raw._raw_extras[0]['events'][1][::2])
# Test events are encoded to stim channel.
events = find_events(raw)
evs = raw.find_edf_events()
assert (all([event in evs[1] for event in events[:, 0]]))
# gh-5604
assert raw.info['meas_date'] == DATE_NONE
with pytest.warns(RuntimeWarning, match='Overlapping events'):
_test_raw_reader(read_raw_edf, input_fname=gdf1_path + '.gdf',
eog=None, misc=None, stim_channel='auto')
示例7: test_brainvision_data_highpass_filters
def test_brainvision_data_highpass_filters():
"""Test reading raw Brain Vision files with amplifier filter settings."""
# Homogeneous highpass in seconds (default measurement unit)
with warnings.catch_warnings(record=True) as w: # event parsing
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_highpass_path,
montage=montage, eog=eog)
assert_true(all('parse triggers that' in str(ww.message) for ww in w))
assert_equal(raw.info['highpass'], 0.1)
assert_equal(raw.info['lowpass'], 250.)
# Heterogeneous highpass in seconds (default measurement unit)
with warnings.catch_warnings(record=True) as w: # event parsing
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_mixed_highpass_path,
montage=montage, eog=eog, event_id=event_id)
lowpass_warning = ['different lowpass filters' in str(ww.message)
for ww in w]
highpass_warning = ['different highpass filters' in str(ww.message)
for ww in w]
expected_warnings = zip(lowpass_warning, highpass_warning)
assert_true(all(any([lp, hp]) for lp, hp in expected_warnings))
assert_equal(raw.info['highpass'], 0.1)
assert_equal(raw.info['lowpass'], 250.)
# Homogeneous highpass in Hertz
with warnings.catch_warnings(record=True): # filter settings
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_highpass_hz_path,
montage=montage, eog=eog, event_id=event_id)
assert_equal(raw.info['highpass'], 10.)
assert_equal(raw.info['lowpass'], 250.)
# Heterogeneous highpass in Hertz
with warnings.catch_warnings(record=True): # filter settings
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_mixed_highpass_hz_path,
montage=montage, eog=eog, event_id=event_id)
trigger_warning = ['parse triggers that' in str(ww.message)
for ww in w]
lowpass_warning = ['different lowpass filters' in str(ww.message)
for ww in w]
highpass_warning = ['different highpass filters' in str(ww.message)
for ww in w]
expected_warnings = zip(trigger_warning, lowpass_warning, highpass_warning)
assert_true(all(any([trg, lp, hp]) for trg, lp, hp in expected_warnings))
assert_equal(raw.info['highpass'], 5.)
assert_equal(raw.info['lowpass'], 250.)
示例8: test_brainvision_data
def test_brainvision_data():
"""Test reading raw Brain Vision files."""
pytest.raises(IOError, read_raw_brainvision, vmrk_path)
pytest.raises(ValueError, read_raw_brainvision, vhdr_path, montage,
preload=True, scale="foo")
raw_py = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_path, montage=montage,
eog=eog, misc='auto', event_id=event_id)
assert ('RawBrainVision' in repr(raw_py))
assert_equal(raw_py.info['highpass'], 0.)
assert_equal(raw_py.info['lowpass'], 250.)
picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
data_py, times_py = raw_py[picks]
# compare with a file that was generated using MNE-C
raw_bin = read_raw_fif(eeg_bin, preload=True)
picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
data_bin, times_bin = raw_bin[picks]
assert_array_almost_equal(data_py, data_bin)
assert_array_almost_equal(times_py, times_bin)
# Make sure EOG channels are marked correctly
for ch in raw_py.info['chs']:
if ch['ch_name'] in eog:
assert_equal(ch['kind'], FIFF.FIFFV_EOG_CH)
elif ch['ch_name'] == 'STI 014':
assert_equal(ch['kind'], FIFF.FIFFV_STIM_CH)
elif ch['ch_name'] in ('CP5', 'CP6'):
assert_equal(ch['kind'], FIFF.FIFFV_MISC_CH)
assert_equal(ch['unit'], FIFF.FIFF_UNIT_NONE)
elif ch['ch_name'] == 'ReRef':
assert_equal(ch['kind'], FIFF.FIFFV_MISC_CH)
assert_equal(ch['unit'], FIFF.FIFF_UNIT_CEL)
elif ch['ch_name'] in raw_py.info['ch_names']:
assert_equal(ch['kind'], FIFF.FIFFV_EEG_CH)
assert_equal(ch['unit'], FIFF.FIFF_UNIT_V)
else:
raise RuntimeError("Unknown Channel: %s" % ch['ch_name'])
# test loading v2
read_raw_brainvision(vhdr_v2_path, eog=eog, preload=True,
event_id=event_id,
trig_shift_by_type={'response': 1000},
verbose='error')
# For the nanovolt unit test we use the same data file with a different
# header file.
raw_nV = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_nV_path, montage=montage,
eog=eog, misc='auto', event_id=event_id)
assert_equal(raw_nV.info['chs'][0]['ch_name'], 'FP1')
assert_equal(raw_nV.info['chs'][0]['kind'], FIFF.FIFFV_EEG_CH)
data_nanovolt, _ = raw_nV[0]
assert_array_almost_equal(data_py[0, :], data_nanovolt[0, :])
示例9: test_data
def test_data():
"""Test reading raw Artemis123 files."""
_test_raw_reader(read_raw_artemis123, input_fname=short_no_HPI_fname)
# test a random selected point
raw = read_raw_artemis123(short_no_HPI_fname, preload=True)
meg_picks = pick_types(raw.info, meg=True, eeg=False)
# checked against matlab reader.
assert_allclose(raw[meg_picks[12]][0][0][123], 3.072510659694672e-11)
示例10: test_data
def test_data():
"""Test reading raw kit files
"""
assert_raises(TypeError, read_raw_kit, epochs_path)
assert_raises(TypeError, read_epochs_kit, sqd_path)
assert_raises(ValueError, read_raw_kit, sqd_path, mrk_path, elp_path)
assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
list(range(200, 190, -1)))
assert_raises(ValueError, read_raw_kit, sqd_path, None, None, None,
list(range(167, 159, -1)), '*', 1, True)
# check functionality
raw_mrk = read_raw_kit(sqd_path, [mrk2_path, mrk3_path], elp_path,
hsp_path)
raw_py = _test_raw_reader(read_raw_kit,
input_fname=sqd_path, mrk=mrk_path, elp=elp_path,
hsp=hsp_path, stim=list(range(167, 159, -1)),
slope='+', stimthresh=1)
assert_true('RawKIT' in repr(raw_py))
assert_equal(raw_mrk.info['kit_system_id'], KIT.SYSTEM_NYU_2010)
assert_true(KIT_CONSTANTS[raw_mrk.info['kit_system_id']] is KIT_NY)
# Test stim channel
raw_stim = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path, stim='<',
preload=False)
for raw in [raw_py, raw_stim, raw_mrk]:
stim_pick = pick_types(raw.info, meg=False, ref_meg=False,
stim=True, exclude='bads')
stim1, _ = raw[stim_pick]
stim2 = np.array(raw.read_stim_ch(), ndmin=2)
assert_array_equal(stim1, stim2)
# Binary file only stores the sensor channels
py_picks = pick_types(raw_py.info, exclude='bads')
raw_bin = op.join(data_dir, 'test_bin_raw.fif')
raw_bin = Raw(raw_bin, preload=True)
bin_picks = pick_types(raw_bin.info, stim=True, exclude='bads')
data_bin, _ = raw_bin[bin_picks]
data_py, _ = raw_py[py_picks]
# this .mat was generated using the Yokogawa MEG Reader
data_Ykgw = op.join(data_dir, 'test_Ykgw.mat')
data_Ykgw = scipy.io.loadmat(data_Ykgw)['data']
data_Ykgw = data_Ykgw[py_picks]
assert_array_almost_equal(data_py, data_Ykgw)
py_picks = pick_types(raw_py.info, stim=True, ref_meg=False,
exclude='bads')
data_py, _ = raw_py[py_picks]
assert_array_almost_equal(data_py, data_bin)
# KIT-UMD data
_test_raw_reader(read_raw_kit, input_fname=sqd_umd_path)
raw = read_raw_kit(sqd_umd_path)
assert_equal(raw.info['kit_system_id'], KIT.SYSTEM_UMD_2014_12)
assert_true(KIT_CONSTANTS[raw.info['kit_system_id']] is KIT_UMD_2014)
示例11: test_brainvision_data_highpass_filters
def test_brainvision_data_highpass_filters():
"""Test reading raw Brain Vision files with amplifier filter settings."""
# Homogeneous highpass in seconds (default measurement unit)
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_highpass_path,
montage=montage, eog=eog)
assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
assert_equal(raw.info['lowpass'], 250.)
# Heterogeneous highpass in seconds (default measurement unit)
with pytest.warns(RuntimeWarning, match='different .*pass filters') as w:
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_mixed_highpass_path,
montage=montage, eog=eog)
lowpass_warning = ['different lowpass filters' in str(ww.message)
for ww in w]
highpass_warning = ['different highpass filters' in str(ww.message)
for ww in w]
expected_warnings = zip(lowpass_warning, highpass_warning)
assert (all(any([lp, hp]) for lp, hp in expected_warnings))
assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
assert_equal(raw.info['lowpass'], 250.)
# Homogeneous highpass in Hertz
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_highpass_hz_path,
montage=montage, eog=eog)
assert_equal(raw.info['highpass'], 10.)
assert_equal(raw.info['lowpass'], 250.)
# Heterogeneous highpass in Hertz
with pytest.warns(RuntimeWarning, match='different .*pass filters') as w:
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_mixed_highpass_hz_path,
montage=montage, eog=eog)
trigger_warning = ['will be dropped' in str(ww.message)
for ww in w]
lowpass_warning = ['different lowpass filters' in str(ww.message)
for ww in w]
highpass_warning = ['different highpass filters' in str(ww.message)
for ww in w]
expected_warnings = zip(trigger_warning, lowpass_warning, highpass_warning)
assert (all(any([trg, lp, hp]) for trg, lp, hp in expected_warnings))
assert_equal(raw.info['highpass'], 5.)
assert_equal(raw.info['lowpass'], 250.)
示例12: test_io_set
def test_io_set():
"""Test importing EEGLAB .set files"""
from scipy import io
_test_raw_reader(read_raw_eeglab, input_fname=raw_fname, montage=montage)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
_test_raw_reader(read_raw_eeglab, input_fname=raw_fname_onefile,
montage=montage)
raw = read_raw_eeglab(input_fname=raw_fname_onefile, montage=montage)
raw2 = read_raw_eeglab(input_fname=raw_fname, montage=montage)
assert_array_equal(raw[:][0], raw2[:][0])
# one warning per each preload=False or str with raw_fname_onefile
assert_equal(len(w), 3)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
epochs = read_epochs_eeglab(epochs_fname)
epochs2 = read_epochs_eeglab(epochs_fname_onefile)
# 3 warnings for each read_epochs_eeglab because there are 3 epochs
# associated with multiple events
assert_equal(len(w), 6)
assert_array_equal(epochs.get_data(), epochs2.get_data())
# test different combinations of events and event_ids
temp_dir = _TempDir()
out_fname = op.join(temp_dir, 'test-eve.fif')
write_events(out_fname, epochs.events)
event_id = {'S255/S8': 1, 'S8': 2, 'S255/S9': 3}
epochs = read_epochs_eeglab(epochs_fname, epochs.events, event_id)
epochs = read_epochs_eeglab(epochs_fname, out_fname, event_id)
assert_raises(ValueError, read_epochs_eeglab, epochs_fname,
None, event_id)
assert_raises(ValueError, read_epochs_eeglab, epochs_fname,
epochs.events, None)
# test if .dat file raises an error
eeg = io.loadmat(epochs_fname, struct_as_record=False,
squeeze_me=True)['EEG']
eeg.data = 'epochs_fname.dat'
bad_epochs_fname = op.join(temp_dir, 'test_epochs.set')
io.savemat(bad_epochs_fname, {'EEG':
{'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan, 'data': eeg.data,
'epoch': eeg.epoch, 'event': eeg.event,
'chanlocs': eeg.chanlocs}})
shutil.copyfile(op.join(base_dir, 'test_epochs.fdt'),
op.join(temp_dir, 'test_epochs.dat'))
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_raises(NotImplementedError, read_epochs_eeglab,
bad_epochs_fname)
assert_equal(len(w), 3)
示例13: test_brainvision_data_lowpass_filters
def test_brainvision_data_lowpass_filters():
"""Test files with amplifier LP filter settings."""
# Homogeneous lowpass in Hertz (default measurement unit)
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_lowpass_path,
montage=montage, eog=eog)
assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
assert_equal(raw.info['lowpass'], 250.)
# Heterogeneous lowpass in Hertz (default measurement unit)
with pytest.warns(RuntimeWarning) as w: # event parsing
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_mixed_lowpass_path,
montage=montage, eog=eog)
lowpass_warning = ['different lowpass filters' in str(ww.message)
for ww in w]
highpass_warning = ['different highpass filters' in str(ww.message)
for ww in w]
expected_warnings = zip(lowpass_warning, highpass_warning)
assert (all(any([lp, hp]) for lp, hp in expected_warnings))
assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
assert_equal(raw.info['lowpass'], 250.)
# Homogeneous lowpass in seconds
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_lowpass_s_path,
montage=montage, eog=eog)
assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
assert_equal(raw.info['lowpass'], 1. / (2 * np.pi * 0.004))
# Heterogeneous lowpass in seconds
with pytest.warns(RuntimeWarning) as w: # filter settings
raw = _test_raw_reader(
read_raw_brainvision, vhdr_fname=vhdr_mixed_lowpass_s_path,
montage=montage, eog=eog)
lowpass_warning = ['different lowpass filters' in str(ww.message)
for ww in w]
highpass_warning = ['different highpass filters' in str(ww.message)
for ww in w]
expected_warnings = zip(lowpass_warning, highpass_warning)
assert (all(any([lp, hp]) for lp, hp in expected_warnings))
assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
assert_equal(raw.info['lowpass'], 1. / (2 * np.pi * 0.004))
示例14: test_brainvision_data
def test_brainvision_data():
"""Test reading raw Brain Vision files
"""
assert_raises(IOError, read_raw_brainvision, vmrk_path)
assert_raises(ValueError, read_raw_brainvision, vhdr_path, montage,
preload=True, scale="foo")
raw_py = _test_raw_reader(read_raw_brainvision, test_preloading=True,
vhdr_fname=vhdr_path, montage=montage, eog=eog)
assert_true('RawBrainVision' in repr(raw_py))
assert_equal(raw_py.info['highpass'], 0.)
assert_equal(raw_py.info['lowpass'], 250.)
picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
data_py, times_py = raw_py[picks]
# compare with a file that was generated using MNE-C
raw_bin = Raw(eeg_bin, preload=True)
picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
data_bin, times_bin = raw_bin[picks]
assert_array_almost_equal(data_py, data_bin)
assert_array_almost_equal(times_py, times_bin)
# Make sure EOG channels are marked correctly
for ch in raw_py.info['chs']:
if ch['ch_name'] in eog:
assert_equal(ch['kind'], FIFF.FIFFV_EOG_CH)
elif ch['ch_name'] == 'STI 014':
assert_equal(ch['kind'], FIFF.FIFFV_STIM_CH)
elif ch['ch_name'] in raw_py.info['ch_names']:
assert_equal(ch['kind'], FIFF.FIFFV_EEG_CH)
else:
raise RuntimeError("Unknown Channel: %s" % ch['ch_name'])
示例15: test_data
def test_data():
"""Test reading raw cnt files."""
raw = _test_raw_reader(read_raw_cnt, montage=None, input_fname=fname,
eog='auto', misc=['NA1', 'LEFT_EAR'])
eog_chs = mne.pick_types(raw.info, eog=True, exclude=[])
assert_equal(len(eog_chs), 2) # test eog='auto'
assert_equal(raw.info['bads'], ['LEFT_EAR', 'VEOGR']) # test bads