当前位置: 首页>>代码示例>>Python>>正文


Python pick._picks_by_type函数代码示例

本文整理汇总了Python中mne.io.pick._picks_by_type函数的典型用法代码示例。如果您正苦于以下问题:Python _picks_by_type函数的具体用法?Python _picks_by_type怎么用?Python _picks_by_type使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了_picks_by_type函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: assert_indexing

def assert_indexing(info, picks_by_type, ref_meg=False, all_data=True):
    """Assert our indexing functions work properly."""
    # First that our old and new channel typing functions are equivalent
    _assert_channel_types(info)
    # Next that channel_indices_by_type works
    if not ref_meg:
        idx = channel_indices_by_type(info)
        for key in idx:
            for p in picks_by_type:
                if key == p[0]:
                    assert_array_equal(idx[key], p[1])
                    break
            else:
                assert len(idx[key]) == 0
    # Finally, picks_by_type (if relevant)
    if not all_data:
        picks_by_type = [p for p in picks_by_type
                         if p[0] in _DATA_CH_TYPES_SPLIT]
    picks_by_type = [(p[0], np.array(p[1], int)) for p in picks_by_type]
    actual = _picks_by_type(info, ref_meg=ref_meg)
    assert_object_equal(actual, picks_by_type)
    if not ref_meg and idx['hbo']:  # our old code had a bug
        with pytest.raises(TypeError, match='unexpected keyword argument'):
            _picks_by_type_old(info, ref_meg=ref_meg)
    else:
        old = _picks_by_type_old(info, ref_meg=ref_meg)
        assert_object_equal(old, picks_by_type)
    # test bads
    info = info.copy()
    info['bads'] = [info['chs'][picks_by_type[0][1][0]]['ch_name']]
    picks_by_type = deepcopy(picks_by_type)
    picks_by_type[0] = (picks_by_type[0][0], picks_by_type[0][1][1:])
    actual = _picks_by_type(info, ref_meg=ref_meg)
    assert_object_equal(actual, picks_by_type)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:34,代码来源:test_pick.py

示例2: test_picks_by_channels

def test_picks_by_channels():
    """Test creating pick_lists."""
    rng = np.random.RandomState(909)

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['grad', 'mag', 'mag', 'eeg']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    _assert_channel_types(info)
    raw = RawArray(test_data, info)

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 3)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=False)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2) + 1)
    assert_equal(pick_list2[0][0], 'meg')

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['mag', 'mag', 'mag', 'mag']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)
    # This acts as a set, not an order
    assert_array_equal(pick_channels(info['ch_names'], ['MEG 002', 'MEG 001']),
                       [0, 1])

    # Make sure checks for list input work.
    pytest.raises(ValueError, pick_channels, ch_names, 'MEG 001')
    pytest.raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 1)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    # pick_types type check
    pytest.raises(ValueError, raw.pick_types, eeg='string')

    # duplicate check
    names = ['MEG 002', 'MEG 002']
    assert len(pick_channels(raw.info['ch_names'], names)) == 1
    assert len(raw.copy().pick_channels(names)[0][0]) == 1
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:51,代码来源:test_pick.py

示例3: test_cov_scaling

def test_cov_scaling():
    """Test rescaling covs"""
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
                          proj=True)
    cov = read_cov(cov_fname)['data']
    cov2 = read_cov(cov_fname)['data']

    assert_array_equal(cov, cov2)
    evoked.pick_channels([evoked.ch_names[k] for k in pick_types(
        evoked.info, meg=True, eeg=True
    )])
    picks_list = _picks_by_type(evoked.info)
    scalings = dict(mag=1e15, grad=1e13, eeg=1e6)

    _apply_scaling_cov(cov2, picks_list, scalings=scalings)
    _apply_scaling_cov(cov, picks_list, scalings=scalings)
    assert_array_equal(cov, cov2)
    assert_true(cov.max() > 1)

    _undo_scaling_cov(cov2, picks_list, scalings=scalings)
    _undo_scaling_cov(cov, picks_list, scalings=scalings)
    assert_array_equal(cov, cov2)
    assert_true(cov.max() < 1)

    data = evoked.data.copy()
    _apply_scaling_array(data, picks_list, scalings=scalings)
    _undo_scaling_array(data, picks_list, scalings=scalings)
    assert_allclose(data, evoked.data, atol=1e-20)
开发者ID:jdammers,项目名称:mne-python,代码行数:28,代码来源:test_cov.py

示例4: test_rank_estimation

def test_rank_estimation():
    """Test raw rank estimation
    """
    iter_tests = itt.product([fif_fname, hp_fif_fname], ["norm", dict(mag=1e11, grad=1e9, eeg=1e5)])  # sss
    for fname, scalings in iter_tests:
        raw = Raw(fname)
        (_, picks_meg), (_, picks_eeg) = _picks_by_type(raw.info, meg_combined=True)
        n_meg = len(picks_meg)
        n_eeg = len(picks_eeg)

        raw = Raw(fname, preload=True)
        if "proc_history" not in raw.info:
            expected_rank = n_meg + n_eeg
        else:
            mf = raw.info["proc_history"][0]["max_info"]
            expected_rank = _get_sss_rank(mf) + n_eeg
        assert_array_equal(raw.estimate_rank(scalings=scalings), expected_rank)

        assert_array_equal(raw.estimate_rank(picks=picks_eeg, scalings=scalings), n_eeg)

        raw = Raw(fname, preload=False)
        if "sss" in fname:
            tstart, tstop = 0.0, 30.0
            raw.add_proj(compute_proj_raw(raw))
            raw.apply_proj()
        else:
            tstart, tstop = 10.0, 20.0

        raw.apply_proj()
        n_proj = len(raw.info["projs"])

        assert_array_equal(
            raw.estimate_rank(tstart=tstart, tstop=tstop, scalings=scalings),
            expected_rank - (1 if "sss" in fname else n_proj),
        )
开发者ID:jasmainak,项目名称:mne-python,代码行数:35,代码来源:test_raw.py

示例5: test_raw_rank_estimation

def test_raw_rank_estimation(fname, ref_meg, scalings):
    """Test raw rank estimation."""
    if ref_meg and scalings != 'norm':
        # Adjust for CTF data (scale factors are quite different)
        scalings = dict(mag=1e31, grad=1e11)
    raw = read_raw_fif(fname)
    raw.crop(0, min(4., raw.times[-1])).load_data()
    out = _picks_by_type(raw.info, ref_meg=ref_meg, meg_combined=True)
    has_eeg = 'eeg' in raw
    if has_eeg:
        (_, picks_meg), (_, picks_eeg) = out
    else:
        (_, picks_meg), = out
        picks_eeg = []
    n_meg = len(picks_meg)
    n_eeg = len(picks_eeg)

    if len(raw.info['proc_history']) == 0:
        expected_rank = n_meg + n_eeg
    else:
        expected_rank = _get_rank_sss(raw.info) + n_eeg
    got_rank = _estimate_rank_raw(raw, scalings=scalings, with_ref_meg=ref_meg)
    assert got_rank == expected_rank
    if has_eeg:
        with pytest.deprecated_call():
            assert raw.estimate_rank(picks=picks_eeg,
                                     scalings=scalings) == n_eeg
    if 'sss' in fname:
        raw.add_proj(compute_proj_raw(raw))
    raw.apply_proj()
    n_proj = len(raw.info['projs'])
    want_rank = expected_rank - (0 if 'sss' in fname else n_proj)
    got_rank = _estimate_rank_raw(raw, scalings=scalings, with_ref_meg=ref_meg)
    assert got_rank == want_rank
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:34,代码来源:test_rank.py

示例6: test_picks_by_channels

def test_picks_by_channels():
    """Test creating pick_lists"""

    rng = np.random.RandomState(909)

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['grad', 'mag', 'mag', 'eeg']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 3)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=False)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2) + 1)
    assert_equal(pick_list2[0][0], 'meg')

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['mag', 'mag', 'mag', 'mag']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)

    # Make sure checks for list input work.
    assert_raises(ValueError, pick_channels, ch_names, 'MEG 001')
    assert_raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 1)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    # pick_types type check
    assert_raises(ValueError, raw.pick_types, eeg='string')
开发者ID:JuliaSprenger,项目名称:mne-python,代码行数:43,代码来源:test_pick.py

示例7: _find_bad_channels

def _find_bad_channels(epochs, picks, use_metrics, thresh, max_iter):
    """Implements the first step of the FASTER algorithm.

    This function attempts to automatically mark bad EEG channels by performing
    outlier detection. It operated on epoched data, to make sure only relevant
    data is analyzed.

    Additional Parameters
    ---------------------
    use_metrics : list of str
        List of metrics to use. Can be any combination of:
            'variance', 'correlation', 'hurst', 'kurtosis', 'line_noise'
        Defaults to all of them.
    thresh : float
        The threshold value, in standard deviations, to apply. A channel
        crossing this threshold value is marked as bad. Defaults to 3.
    max_iter : int
        The maximum number of iterations performed during outlier detection
        (defaults to 1, as in the original FASTER paper).
    """
    from scipy.stats import kurtosis
    metrics = {
        'variance': lambda x: np.var(x, axis=1),
        'correlation': lambda x: np.mean(
            np.ma.masked_array(np.corrcoef(x),
                               np.identity(len(x), dtype=bool)), axis=0),
        'hurst': lambda x: _hurst(x),
        'kurtosis': lambda x: kurtosis(x, axis=1),
        'line_noise': lambda x: _freqs_power(x, epochs.info['sfreq'],
                                             [50, 60]),
    }

    if use_metrics is None:
        use_metrics = metrics.keys()

    # Concatenate epochs in time
    data = epochs.get_data()[:, picks]
    data = data.transpose(1, 0, 2).reshape(data.shape[1], -1)

    # Find bad channels
    bads = defaultdict(list)
    info = pick_info(epochs.info, picks, copy=True)
    for ch_type, chs in _picks_by_type(info):
        logger.info('Bad channel detection on %s channels:' % ch_type.upper())
        for metric in use_metrics:
            scores = metrics[metric](data[chs])
            bad_channels = [epochs.ch_names[picks[chs[i]]]
                            for i in find_outliers(scores, thresh, max_iter)]
            logger.info('\tBad by %s: %s' % (metric, bad_channels))
            bads[metric].append(bad_channels)

    bads = dict((k, np.concatenate(v).tolist()) for k, v in bads.items())
    return bads
开发者ID:Qi0116,项目名称:deepthought,代码行数:53,代码来源:faster.py

示例8: _find_bad_channels_in_epochs

def _find_bad_channels_in_epochs(epochs, picks, use_metrics, thresh, max_iter):
    """Implements the fourth step of the FASTER algorithm.

    This function attempts to automatically mark bad channels in each epochs by
    performing outlier detection.

    Additional Parameters
    ---------------------
    use_metrics : list of str
        List of metrics to use. Can be any combination of:
        'amplitude', 'variance', 'deviation', 'median_gradient'
        Defaults to all of them.
    thresh : float
        The threshold value, in standard deviations, to apply. A channel
        crossing this threshold value is marked as bad. Defaults to 3.
    max_iter : int
        The maximum number of iterations performed during outlier detection
        (defaults to 1, as in the original FASTER paper).
    """

    metrics = {
        'amplitude': lambda x: np.ptp(x, axis=2),
        'deviation': lambda x: _deviation(x),
        'variance': lambda x: np.var(x, axis=2),
        'median_gradient': lambda x: np.median(np.abs(np.diff(x)), axis=2),
        'line_noise': lambda x: _freqs_power(x, epochs.info['sfreq'],
                                             [50, 60]),
    }

    if use_metrics is None:
        use_metrics = metrics.keys()

    info = pick_info(epochs.info, picks, copy=True)
    data = epochs.get_data()[:, picks]
    bads = dict((m, np.zeros((len(data), len(picks)), dtype=bool)) for
                m in metrics)
    for ch_type, chs in _picks_by_type(info):
        ch_names = [info['ch_names'][k] for k in chs]
        chs = np.array(chs)
        for metric in use_metrics:
            logger.info('Bad channel-in-epoch detection on %s channels:'
                        % ch_type.upper())
            s_epochs = metrics[metric](data[:, chs])
            for i_epochs, epoch in enumerate(s_epochs):
                outliers = find_outliers(epoch, thresh, max_iter)
                if len(outliers) > 0:
                    bad_segment = [ch_names[k] for k in outliers]
                    logger.info('Epoch %d, Bad by %s:\n\t%s' % (
                        i_epochs, metric, bad_segment))
                    bads[metric][i_epochs, chs[outliers]] = True

    return bads
开发者ID:Qi0116,项目名称:deepthought,代码行数:52,代码来源:faster.py

示例9: test_picks_by_channels

def test_picks_by_channels():
    """Test creating pick_lists"""

    rng = np.random.RandomState(909)

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['grad', 'mag', 'mag', 'eeg']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 3)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=False)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2) + 1)
    assert_equal(pick_list2[0][0], 'meg')

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['mag', 'mag', 'mag', 'mag']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 1)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')
开发者ID:Lem97,项目名称:mne-python,代码行数:36,代码来源:test_pick.py

示例10: _find_bad_epochs

def _find_bad_epochs(epochs, picks, use_metrics, thresh, max_iter):
    """Implements the second step of the FASTER algorithm.

    This function attempts to automatically mark bad epochs by performing
    outlier detection.

    Additional Parameters
    ---------------------
    use_metrics : list of str
        List of metrics to use. Can be any combination of:
        'amplitude', 'variance', 'deviation'. Defaults to all of them.
    thresh : float
        The threshold value, in standard deviations, to apply. A channel
        crossing this threshold value is marked as bad. Defaults to 3.
    max_iter : int
        The maximum number of iterations performed during outlier detection
        (defaults to 1, as in the original FASTER paper).
    """

    metrics = {
        'amplitude': lambda x: np.mean(np.ptp(x, axis=2), axis=1),
        'deviation': lambda x: np.mean(_deviation(x), axis=1),
        'variance': lambda x: np.mean(np.var(x, axis=2), axis=1),
    }

    if use_metrics is None:
        use_metrics = metrics.keys()

    info = pick_info(epochs.info, picks, copy=True)
    data = epochs.get_data()[:, picks]

    bads = defaultdict(list)
    for ch_type, chs in _picks_by_type(info):
        logger.info('Bad epoch detection on %s channels:' % ch_type.upper())
        for metric in use_metrics:
            scores = metrics[metric](data[:, chs])
            bad_epochs = find_outliers(scores, thresh, max_iter)
            logger.info('\tBad by %s: %s' % (metric, bad_epochs))
            bads[metric].append(bad_epochs)

    bads = dict((k, np.concatenate(v).tolist()) for k, v in bads.items())
    return bads
开发者ID:Qi0116,项目名称:deepthought,代码行数:42,代码来源:faster.py


注:本文中的mne.io.pick._picks_by_type函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。