本文整理汇总了Python中mne.io.pick._picks_by_type函数的典型用法代码示例。如果您正苦于以下问题:Python _picks_by_type函数的具体用法?Python _picks_by_type怎么用?Python _picks_by_type使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了_picks_by_type函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: assert_indexing
def assert_indexing(info, picks_by_type, ref_meg=False, all_data=True):
"""Assert our indexing functions work properly."""
# First that our old and new channel typing functions are equivalent
_assert_channel_types(info)
# Next that channel_indices_by_type works
if not ref_meg:
idx = channel_indices_by_type(info)
for key in idx:
for p in picks_by_type:
if key == p[0]:
assert_array_equal(idx[key], p[1])
break
else:
assert len(idx[key]) == 0
# Finally, picks_by_type (if relevant)
if not all_data:
picks_by_type = [p for p in picks_by_type
if p[0] in _DATA_CH_TYPES_SPLIT]
picks_by_type = [(p[0], np.array(p[1], int)) for p in picks_by_type]
actual = _picks_by_type(info, ref_meg=ref_meg)
assert_object_equal(actual, picks_by_type)
if not ref_meg and idx['hbo']: # our old code had a bug
with pytest.raises(TypeError, match='unexpected keyword argument'):
_picks_by_type_old(info, ref_meg=ref_meg)
else:
old = _picks_by_type_old(info, ref_meg=ref_meg)
assert_object_equal(old, picks_by_type)
# test bads
info = info.copy()
info['bads'] = [info['chs'][picks_by_type[0][1][0]]['ch_name']]
picks_by_type = deepcopy(picks_by_type)
picks_by_type[0] = (picks_by_type[0][0], picks_by_type[0][1][1:])
actual = _picks_by_type(info, ref_meg=ref_meg)
assert_object_equal(actual, picks_by_type)
示例2: test_picks_by_channels
def test_picks_by_channels():
"""Test creating pick_lists."""
rng = np.random.RandomState(909)
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['grad', 'mag', 'mag', 'eeg']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
_assert_channel_types(info)
raw = RawArray(test_data, info)
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 3)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=False)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2) + 1)
assert_equal(pick_list2[0][0], 'meg')
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['mag', 'mag', 'mag', 'mag']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = RawArray(test_data, info)
# This acts as a set, not an order
assert_array_equal(pick_channels(info['ch_names'], ['MEG 002', 'MEG 001']),
[0, 1])
# Make sure checks for list input work.
pytest.raises(ValueError, pick_channels, ch_names, 'MEG 001')
pytest.raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 1)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
# pick_types type check
pytest.raises(ValueError, raw.pick_types, eeg='string')
# duplicate check
names = ['MEG 002', 'MEG 002']
assert len(pick_channels(raw.info['ch_names'], names)) == 1
assert len(raw.copy().pick_channels(names)[0][0]) == 1
示例3: test_cov_scaling
def test_cov_scaling():
"""Test rescaling covs"""
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
proj=True)
cov = read_cov(cov_fname)['data']
cov2 = read_cov(cov_fname)['data']
assert_array_equal(cov, cov2)
evoked.pick_channels([evoked.ch_names[k] for k in pick_types(
evoked.info, meg=True, eeg=True
)])
picks_list = _picks_by_type(evoked.info)
scalings = dict(mag=1e15, grad=1e13, eeg=1e6)
_apply_scaling_cov(cov2, picks_list, scalings=scalings)
_apply_scaling_cov(cov, picks_list, scalings=scalings)
assert_array_equal(cov, cov2)
assert_true(cov.max() > 1)
_undo_scaling_cov(cov2, picks_list, scalings=scalings)
_undo_scaling_cov(cov, picks_list, scalings=scalings)
assert_array_equal(cov, cov2)
assert_true(cov.max() < 1)
data = evoked.data.copy()
_apply_scaling_array(data, picks_list, scalings=scalings)
_undo_scaling_array(data, picks_list, scalings=scalings)
assert_allclose(data, evoked.data, atol=1e-20)
示例4: test_rank_estimation
def test_rank_estimation():
"""Test raw rank estimation
"""
iter_tests = itt.product([fif_fname, hp_fif_fname], ["norm", dict(mag=1e11, grad=1e9, eeg=1e5)]) # sss
for fname, scalings in iter_tests:
raw = Raw(fname)
(_, picks_meg), (_, picks_eeg) = _picks_by_type(raw.info, meg_combined=True)
n_meg = len(picks_meg)
n_eeg = len(picks_eeg)
raw = Raw(fname, preload=True)
if "proc_history" not in raw.info:
expected_rank = n_meg + n_eeg
else:
mf = raw.info["proc_history"][0]["max_info"]
expected_rank = _get_sss_rank(mf) + n_eeg
assert_array_equal(raw.estimate_rank(scalings=scalings), expected_rank)
assert_array_equal(raw.estimate_rank(picks=picks_eeg, scalings=scalings), n_eeg)
raw = Raw(fname, preload=False)
if "sss" in fname:
tstart, tstop = 0.0, 30.0
raw.add_proj(compute_proj_raw(raw))
raw.apply_proj()
else:
tstart, tstop = 10.0, 20.0
raw.apply_proj()
n_proj = len(raw.info["projs"])
assert_array_equal(
raw.estimate_rank(tstart=tstart, tstop=tstop, scalings=scalings),
expected_rank - (1 if "sss" in fname else n_proj),
)
示例5: test_raw_rank_estimation
def test_raw_rank_estimation(fname, ref_meg, scalings):
"""Test raw rank estimation."""
if ref_meg and scalings != 'norm':
# Adjust for CTF data (scale factors are quite different)
scalings = dict(mag=1e31, grad=1e11)
raw = read_raw_fif(fname)
raw.crop(0, min(4., raw.times[-1])).load_data()
out = _picks_by_type(raw.info, ref_meg=ref_meg, meg_combined=True)
has_eeg = 'eeg' in raw
if has_eeg:
(_, picks_meg), (_, picks_eeg) = out
else:
(_, picks_meg), = out
picks_eeg = []
n_meg = len(picks_meg)
n_eeg = len(picks_eeg)
if len(raw.info['proc_history']) == 0:
expected_rank = n_meg + n_eeg
else:
expected_rank = _get_rank_sss(raw.info) + n_eeg
got_rank = _estimate_rank_raw(raw, scalings=scalings, with_ref_meg=ref_meg)
assert got_rank == expected_rank
if has_eeg:
with pytest.deprecated_call():
assert raw.estimate_rank(picks=picks_eeg,
scalings=scalings) == n_eeg
if 'sss' in fname:
raw.add_proj(compute_proj_raw(raw))
raw.apply_proj()
n_proj = len(raw.info['projs'])
want_rank = expected_rank - (0 if 'sss' in fname else n_proj)
got_rank = _estimate_rank_raw(raw, scalings=scalings, with_ref_meg=ref_meg)
assert got_rank == want_rank
示例6: test_picks_by_channels
def test_picks_by_channels():
"""Test creating pick_lists"""
rng = np.random.RandomState(909)
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['grad', 'mag', 'mag', 'eeg']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = RawArray(test_data, info)
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 3)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=False)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2) + 1)
assert_equal(pick_list2[0][0], 'meg')
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['mag', 'mag', 'mag', 'mag']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = RawArray(test_data, info)
# Make sure checks for list input work.
assert_raises(ValueError, pick_channels, ch_names, 'MEG 001')
assert_raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 1)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
# pick_types type check
assert_raises(ValueError, raw.pick_types, eeg='string')
示例7: _find_bad_channels
def _find_bad_channels(epochs, picks, use_metrics, thresh, max_iter):
"""Implements the first step of the FASTER algorithm.
This function attempts to automatically mark bad EEG channels by performing
outlier detection. It operated on epoched data, to make sure only relevant
data is analyzed.
Additional Parameters
---------------------
use_metrics : list of str
List of metrics to use. Can be any combination of:
'variance', 'correlation', 'hurst', 'kurtosis', 'line_noise'
Defaults to all of them.
thresh : float
The threshold value, in standard deviations, to apply. A channel
crossing this threshold value is marked as bad. Defaults to 3.
max_iter : int
The maximum number of iterations performed during outlier detection
(defaults to 1, as in the original FASTER paper).
"""
from scipy.stats import kurtosis
metrics = {
'variance': lambda x: np.var(x, axis=1),
'correlation': lambda x: np.mean(
np.ma.masked_array(np.corrcoef(x),
np.identity(len(x), dtype=bool)), axis=0),
'hurst': lambda x: _hurst(x),
'kurtosis': lambda x: kurtosis(x, axis=1),
'line_noise': lambda x: _freqs_power(x, epochs.info['sfreq'],
[50, 60]),
}
if use_metrics is None:
use_metrics = metrics.keys()
# Concatenate epochs in time
data = epochs.get_data()[:, picks]
data = data.transpose(1, 0, 2).reshape(data.shape[1], -1)
# Find bad channels
bads = defaultdict(list)
info = pick_info(epochs.info, picks, copy=True)
for ch_type, chs in _picks_by_type(info):
logger.info('Bad channel detection on %s channels:' % ch_type.upper())
for metric in use_metrics:
scores = metrics[metric](data[chs])
bad_channels = [epochs.ch_names[picks[chs[i]]]
for i in find_outliers(scores, thresh, max_iter)]
logger.info('\tBad by %s: %s' % (metric, bad_channels))
bads[metric].append(bad_channels)
bads = dict((k, np.concatenate(v).tolist()) for k, v in bads.items())
return bads
示例8: _find_bad_channels_in_epochs
def _find_bad_channels_in_epochs(epochs, picks, use_metrics, thresh, max_iter):
"""Implements the fourth step of the FASTER algorithm.
This function attempts to automatically mark bad channels in each epochs by
performing outlier detection.
Additional Parameters
---------------------
use_metrics : list of str
List of metrics to use. Can be any combination of:
'amplitude', 'variance', 'deviation', 'median_gradient'
Defaults to all of them.
thresh : float
The threshold value, in standard deviations, to apply. A channel
crossing this threshold value is marked as bad. Defaults to 3.
max_iter : int
The maximum number of iterations performed during outlier detection
(defaults to 1, as in the original FASTER paper).
"""
metrics = {
'amplitude': lambda x: np.ptp(x, axis=2),
'deviation': lambda x: _deviation(x),
'variance': lambda x: np.var(x, axis=2),
'median_gradient': lambda x: np.median(np.abs(np.diff(x)), axis=2),
'line_noise': lambda x: _freqs_power(x, epochs.info['sfreq'],
[50, 60]),
}
if use_metrics is None:
use_metrics = metrics.keys()
info = pick_info(epochs.info, picks, copy=True)
data = epochs.get_data()[:, picks]
bads = dict((m, np.zeros((len(data), len(picks)), dtype=bool)) for
m in metrics)
for ch_type, chs in _picks_by_type(info):
ch_names = [info['ch_names'][k] for k in chs]
chs = np.array(chs)
for metric in use_metrics:
logger.info('Bad channel-in-epoch detection on %s channels:'
% ch_type.upper())
s_epochs = metrics[metric](data[:, chs])
for i_epochs, epoch in enumerate(s_epochs):
outliers = find_outliers(epoch, thresh, max_iter)
if len(outliers) > 0:
bad_segment = [ch_names[k] for k in outliers]
logger.info('Epoch %d, Bad by %s:\n\t%s' % (
i_epochs, metric, bad_segment))
bads[metric][i_epochs, chs[outliers]] = True
return bads
示例9: test_picks_by_channels
def test_picks_by_channels():
"""Test creating pick_lists"""
rng = np.random.RandomState(909)
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['grad', 'mag', 'mag', 'eeg']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = RawArray(test_data, info)
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 3)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=False)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2) + 1)
assert_equal(pick_list2[0][0], 'meg')
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['mag', 'mag', 'mag', 'mag']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = RawArray(test_data, info)
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 1)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
示例10: _find_bad_epochs
def _find_bad_epochs(epochs, picks, use_metrics, thresh, max_iter):
"""Implements the second step of the FASTER algorithm.
This function attempts to automatically mark bad epochs by performing
outlier detection.
Additional Parameters
---------------------
use_metrics : list of str
List of metrics to use. Can be any combination of:
'amplitude', 'variance', 'deviation'. Defaults to all of them.
thresh : float
The threshold value, in standard deviations, to apply. A channel
crossing this threshold value is marked as bad. Defaults to 3.
max_iter : int
The maximum number of iterations performed during outlier detection
(defaults to 1, as in the original FASTER paper).
"""
metrics = {
'amplitude': lambda x: np.mean(np.ptp(x, axis=2), axis=1),
'deviation': lambda x: np.mean(_deviation(x), axis=1),
'variance': lambda x: np.mean(np.var(x, axis=2), axis=1),
}
if use_metrics is None:
use_metrics = metrics.keys()
info = pick_info(epochs.info, picks, copy=True)
data = epochs.get_data()[:, picks]
bads = defaultdict(list)
for ch_type, chs in _picks_by_type(info):
logger.info('Bad epoch detection on %s channels:' % ch_type.upper())
for metric in use_metrics:
scores = metrics[metric](data[:, chs])
bad_epochs = find_outliers(scores, thresh, max_iter)
logger.info('\tBad by %s: %s' % (metric, bad_epochs))
bads[metric].append(bad_epochs)
bads = dict((k, np.concatenate(v).tolist()) for k, v in bads.items())
return bads