当前位置: 首页>>代码示例>>Python>>正文


Python RawArray.pick_types方法代码示例

本文整理汇总了Python中mne.io.RawArray.pick_types方法的典型用法代码示例。如果您正苦于以下问题:Python RawArray.pick_types方法的具体用法?Python RawArray.pick_types怎么用?Python RawArray.pick_types使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.io.RawArray的用法示例。


在下文中一共展示了RawArray.pick_types方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_filter_picks

# 需要导入模块: from mne.io import RawArray [as 别名]
# 或者: from mne.io.RawArray import pick_types [as 别名]
def test_filter_picks():
    """Test filtering default channel picks"""
    ch_types = ['mag', 'grad', 'eeg', 'seeg', 'misc', 'stim']
    info = create_info(ch_names=ch_types, ch_types=ch_types, sfreq=256)
    raw = RawArray(data=np.zeros((len(ch_types), 1000)), info=info)

    # -- Deal with meg mag grad exception
    ch_types = ('misc', 'stim', 'meg', 'eeg', 'seeg')

    # -- Filter data channels
    for ch_type in ('mag', 'grad', 'eeg', 'seeg'):
        picks = dict((ch, ch == ch_type) for ch in ch_types)
        picks['meg'] = ch_type if ch_type in ('mag', 'grad') else False
        raw_ = raw.pick_types(copy=True, **picks)
        # Avoid RuntimeWarning due to Attenuation
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter('always')
            raw_.filter(10, 30)
            assert_true(len(w) == 1)

    # -- Error if no data channel
    for ch_type in ('misc', 'stim'):
        picks = dict((ch, ch == ch_type) for ch in ch_types)
        raw_ = raw.pick_types(copy=True, **picks)
        assert_raises(RuntimeError, raw_.filter, 10, 30)
开发者ID:Pablo-Arias,项目名称:mne-python,代码行数:27,代码来源:test_raw_fiff.py

示例2: main

# 需要导入模块: from mne.io import RawArray [as 别名]
# 或者: from mne.io.RawArray import pick_types [as 别名]
def main():
	print "Using MNE", mne.__version__

	opts = parse_args()
	verbose = opts.debug

	# constants
	sfreq = 100.0
	class_labels = {'left':2, 'right':3}

	# files
	train_fname = "data/custom/bci4/train/ds1g.txt"
	test_fname = "data/custom/bci4/test/ds1g.txt"
	#train_fname = "data/custom/bci4/active_train/ds1b.txt"
	#test_fname = "data/custom/bci4/active_test/ds1b.txt"

	#################
	# LOAD DATA

	eval_start = time.clock()
	# load train data from training file
	[train_nparray, train_info] = file_to_nparray(train_fname, sfreq=sfreq, verbose=verbose)
	end = time.clock()
	print "train dataset", train_fname, "loaded in ", str(end - eval_start),"seconds"

	eval_start = time.clock()
	# load test data from test file
	[test_nparray, test_info] = file_to_nparray(test_fname, sfreq=sfreq, verbose=verbose)
	end = time.clock()
	print "test dataset", test_fname, "loaded in ", str(end - eval_start),"seconds"

	total_start = time.clock()

	##################
	# CLASSIFY DATA

	# pick a subset of total electrodes, or else just get all of the channels of type 'eeg'
	picks = getPicks('motor16') or pick_types(train_info, eeg=True)

	# hyperparam 1
	bandpass_filters = get_bandpass_ranges()

	# hyperparam 2
	epoch_bounds = get_window_ranges()

	# extract X,y from train data
	train_raw = RawArray(train_nparray, train_info, verbose=verbose)
	train_events = mne.find_events(train_raw, shortest_event=0, consecutive=True, verbose=verbose)
	train_epochs = Epochs(raw=train_raw, events=train_events, event_id=class_labels,
	                      tmin=-0.5, tmax=3.5, proj=False, picks=picks, baseline=None,
	                      preload=True, add_eeg_ref=False, verbose=verbose)
	train_X = train_epochs.get_data()
	train_y = train_epochs.events[:, -1] - 2    # convert classes [2,3] to [0,1]

	# extract X,y from test data
	test_raw = RawArray(test_nparray, test_info, verbose=verbose)
	test_events = mne.find_events(test_raw, shortest_event=0, consecutive=True, verbose=verbose)
	test_epochs = Epochs(raw=test_raw, events=test_events, event_id=class_labels,
	                     tmin=-0.5, tmax=3.5, proj=False, picks=picks, baseline=None,
	                     preload=True, add_eeg_ref=False, verbose=verbose)
	test_X = test_epochs.get_data()
	test_y = test_epochs.events[:, -1] - 2      # convert classes [2,3] to [0,1]



	# custom grid search
	estimator = CSPEstimator(bandpass_filters=bandpass_filters,
               epoch_bounds=epoch_bounds,
               num_spatial_filters=6,
               class_labels=class_labels,
               sfreq=sfreq,
               picks=picks,
               num_votes=6,
               consecutive=True)
	estimator.fit(train_X,train_y)

	#
	print "-------------------------------------------"
	score = estimator.score(test_X,test_y)
	print "-------------------------------------------"
	print "average estimator score",score
	print
	# print

	print "-------------------------------------------"
	print
	print "training run time", round(time.clock() - total_start,1),"sec"
	#exit()

	# just a pause here to allow visual inspection of top classifiers picked by grid search
	time.sleep(15)


	# now we go into predict mode, in which we are going over the test data using sliding windows
	# this is a simulation of what would happen if we were in "online" mode with live data
	# for each window, a prediction is given by the ensemble of top classifiers
	# next to this, we see the actual labels from the real data (i.e. the y vector)
	print "-------------------------------------------"
	print "PREDICT"
	print
#.........这里部分代码省略.........
开发者ID:octopicorn,项目名称:bcikit,代码行数:103,代码来源:offline_analysis_grid.py


注:本文中的mne.io.RawArray.pick_types方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。