本文整理汇总了Python中mne.VolSourceEstimate类的典型用法代码示例。如果您正苦于以下问题:Python VolSourceEstimate类的具体用法?Python VolSourceEstimate怎么用?Python VolSourceEstimate使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了VolSourceEstimate类的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_transform_data
def test_transform_data():
"""Test applying linear (time) transform to data"""
# make up some data
n_sensors, n_vertices, n_times = 10, 20, 4
kernel = rng.randn(n_vertices, n_sensors)
sens_data = rng.randn(n_sensors, n_times)
vertices = np.arange(n_vertices)
data = np.dot(kernel, sens_data)
for idx, tmin_idx, tmax_idx in\
zip([None, np.arange(n_vertices // 2, n_vertices)],
[None, 1], [None, 3]):
if idx is None:
idx_use = slice(None, None)
else:
idx_use = idx
data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx])
for stc_data in (data, (kernel, sens_data)):
stc = VolSourceEstimate(stc_data, vertices=vertices,
tmin=0., tstep=1.)
stc_data_t = stc.transform_data(_my_trans, idx=idx,
tmin_idx=tmin_idx,
tmax_idx=tmax_idx)
assert_allclose(data_f, stc_data_t)
示例2: test_plot_volume_source_estimates
def test_plot_volume_source_estimates():
"""Test interactive plotting of volume source estimates."""
forward = read_forward_solution(fwd_fname)
sample_src = forward['src']
vertices = [s['vertno'] for s in sample_src]
n_verts = sum(len(v) for v in vertices)
n_time = 2
data = np.random.RandomState(0).rand(n_verts, n_time)
vol_stc = VolSourceEstimate(data, vertices, 1, 1)
vol_vec_stc = VolVectorSourceEstimate(
np.tile(vol_stc.data[:, np.newaxis], (1, 3, 1)), vol_stc.vertices,
0, 1)
for mode, stc in zip(['glass_brain', 'stat_map'], (vol_stc, vol_vec_stc)):
with pytest.warns(None): # sometimes get scalars/index warning
fig = stc.plot(sample_src, subject='sample',
subjects_dir=subjects_dir,
mode=mode)
# [ax_time, ax_y, ax_x, ax_z]
for ax_idx in [0, 2, 3, 4]:
_fake_click(fig, fig.axes[ax_idx], (0.3, 0.5))
fig.canvas.key_press_event('left')
fig.canvas.key_press_event('shift+right')
with pytest.raises(ValueError, match='must be one of'):
vol_stc.plot(sample_src, 'sample', subjects_dir, mode='abcd')
vertices.append([])
surface_stc = SourceEstimate(data, vertices, 1, 1)
with pytest.raises(ValueError, match='Only Vol'):
plot_volume_source_estimates(surface_stc, sample_src, 'sample',
subjects_dir)
with pytest.raises(ValueError, match='Negative colormap limits'):
vol_stc.plot(sample_src, 'sample', subjects_dir,
clim=dict(lims=[-1, 2, 3], kind='value'))
示例3: test_vol_mask
def test_vol_mask():
"""Test extraction of volume mask."""
src = read_source_spaces(fname_vsrc)
mask = _get_vol_mask(src)
# Let's use an alternative way that should be equivalent
vertices = src[0]['vertno']
n_vertices = len(vertices)
data = (1 + np.arange(n_vertices))[:, np.newaxis]
stc_tmp = VolSourceEstimate(data, vertices, tmin=0., tstep=1.)
img = stc_tmp.as_volume(src, mri_resolution=False)
img_data = img.get_data()[:, :, :, 0].T
mask_nib = (img_data != 0)
assert_array_equal(img_data[mask_nib], data[:, 0])
assert_array_equal(np.where(mask_nib.ravel())[0], src[0]['vertno'])
assert_array_equal(mask, mask_nib)
assert_array_equal(img_data.shape, mask.shape)
示例4: test_volume_stc
def test_volume_stc():
"""Test volume STCs
"""
N = 100
data = np.arange(N)[:, np.newaxis]
datas = [data, data, np.arange(2)[:, np.newaxis]]
vertno = np.arange(N)
vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis]]
vertno_reads = [vertno, vertno, np.arange(2)]
for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads):
stc = VolSourceEstimate(data, vertno, 0, 1)
fname_temp = op.join(tempdir, 'temp-vl.stc')
stc_new = stc
for _ in xrange(2):
stc_new.save(fname_temp)
stc_new = read_source_estimate(fname_temp)
assert_true(isinstance(stc_new, VolSourceEstimate))
assert_array_equal(vertno_read, stc_new.vertno)
assert_array_almost_equal(stc.data, stc_new.data)
# now let's actually read a MNE-C processed file
stc = read_source_estimate(fname_vol, 'sample')
assert_true(isinstance(stc, VolSourceEstimate))
assert_true('sample' in repr(stc))
stc_new = stc
assert_raises(ValueError, stc.save, fname_vol, ftype='whatever')
for _ in xrange(2):
fname_temp = op.join(tempdir, 'temp-vol.w')
stc_new.save(fname_temp, ftype='w')
stc_new = read_source_estimate(fname_temp)
assert_true(isinstance(stc_new, VolSourceEstimate))
assert_array_equal(stc.vertno, stc_new.vertno)
assert_array_almost_equal(stc.data, stc_new.data)
# save the stc as a nifti file and export
try:
import nibabel as nib
src = read_source_spaces(fname_vsrc)
vol_fname = op.join(tempdir, 'stc.nii.gz')
stc.save_as_volume(vol_fname, src,
dest='surf', mri_resolution=False)
img = nib.load(vol_fname)
assert_true(img.shape == src[0]['shape'] + (len(stc.times),))
t1_img = nib.load(fname_t1)
stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src,
dest='mri', mri_resolution=True)
img = nib.load(vol_fname)
assert_true(img.shape == t1_img.shape + (len(stc.times),))
assert_array_almost_equal(img.get_affine(), t1_img.get_affine(),
decimal=5)
# export without saving
img = stc.as_volume(src, dest='mri', mri_resolution=True)
assert_true(img.shape == t1_img.shape + (len(stc.times),))
assert_array_almost_equal(img.get_affine(), t1_img.get_affine(),
decimal=5)
except ImportError:
print 'Save as nifti test skipped, needs NiBabel'
示例5: test_save_vol_stc_as_nifti
def test_save_vol_stc_as_nifti():
"""Save the stc as a nifti file and export."""
import nibabel as nib
tempdir = _TempDir()
src = read_source_spaces(fname_vsrc)
vol_fname = op.join(tempdir, 'stc.nii.gz')
# now let's actually read a MNE-C processed file
stc = read_source_estimate(fname_vol, 'sample')
assert (isinstance(stc, VolSourceEstimate))
stc.save_as_volume(vol_fname, src,
dest='surf', mri_resolution=False)
with pytest.warns(None): # nib<->numpy
img = nib.load(vol_fname)
assert (img.shape == src[0]['shape'] + (len(stc.times),))
with pytest.warns(None): # nib<->numpy
t1_img = nib.load(fname_t1)
stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src,
dest='mri', mri_resolution=True)
with pytest.warns(None): # nib<->numpy
img = nib.load(vol_fname)
assert (img.shape == t1_img.shape + (len(stc.times),))
assert_allclose(img.affine, t1_img.affine, atol=1e-5)
# export without saving
img = stc.as_volume(src, dest='mri', mri_resolution=True)
assert (img.shape == t1_img.shape + (len(stc.times),))
assert_allclose(img.affine, t1_img.affine, atol=1e-5)
src = SourceSpaces([src[0], src[0]])
stc = VolSourceEstimate(np.r_[stc.data, stc.data],
[stc.vertices, stc.vertices],
tmin=stc.tmin, tstep=stc.tstep)
img = stc.as_volume(src, dest='mri', mri_resolution=False)
assert (img.shape == src[0]['shape'] + (len(stc.times),))