本文整理汇总了Python中mne.stc_to_label函数的典型用法代码示例。如果您正苦于以下问题:Python stc_to_label函数的具体用法?Python stc_to_label怎么用?Python stc_to_label使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了stc_to_label函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_stc_to_label
def test_stc_to_label():
"""Test stc_to_label
"""
src = read_source_spaces(src_fname)
src_bad = read_source_spaces(src_bad_fname)
stc = read_source_estimate(stc_fname, 'sample')
os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
labels1 = stc_to_label(stc, src='sample', smooth=3)
with warnings.catch_warnings(record=True) as w: # connectedness warning
warnings.simplefilter('always')
labels2 = stc_to_label(stc, src=src, smooth=3)
assert_true(len(w) == 1)
assert_true(len(labels1) == len(labels2))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
with warnings.catch_warnings(record=True) as w: # connectedness warning
warnings.simplefilter('always')
labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=3,
connected=True)
assert_true(len(w) == 1)
assert_raises(ValueError, stc_to_label, stc, 'sample', smooth=3,
connected=True)
assert_raises(RuntimeError, stc_to_label, stc, src=src_bad, connected=True)
assert_true(len(labels_lh) == 1)
assert_true(len(labels_rh) == 1)
示例2: test_stc_to_label
def test_stc_to_label():
"""Test stc_to_label
"""
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
src = read_source_spaces(fwd_fname)
src_bad = read_source_spaces(src_bad_fname)
stc = read_source_estimate(stc_fname, 'sample')
os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
labels1 = _stc_to_label(stc, src='sample', smooth=3)
labels2 = _stc_to_label(stc, src=src, smooth=3)
assert_equal(len(labels1), len(labels2))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
with warnings.catch_warnings(record=True) as w: # connectedness warning
warnings.simplefilter('always')
labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True,
connected=True)
assert_true(len(w) > 0)
assert_raises(ValueError, stc_to_label, stc, 'sample', smooth=True,
connected=True)
assert_raises(RuntimeError, stc_to_label, stc, smooth=True, src=src_bad,
connected=True)
assert_equal(len(labels_lh), 1)
assert_equal(len(labels_rh), 1)
# test getting tris
tris = labels_lh[0].get_tris(src[0]['use_tris'], vertices=stc.vertices[0])
assert_raises(ValueError, spatial_tris_connectivity, tris,
remap_vertices=False)
connectivity = spatial_tris_connectivity(tris, remap_vertices=True)
assert_true(connectivity.shape[0] == len(stc.vertices[0]))
# "src" as a subject name
assert_raises(TypeError, stc_to_label, stc, src=1, smooth=False,
connected=False, subjects_dir=subjects_dir)
assert_raises(ValueError, stc_to_label, stc, src=SourceSpaces([src[0]]),
smooth=False, connected=False, subjects_dir=subjects_dir)
assert_raises(ValueError, stc_to_label, stc, src='sample', smooth=False,
connected=True, subjects_dir=subjects_dir)
assert_raises(ValueError, stc_to_label, stc, src='sample', smooth=True,
connected=False, subjects_dir=subjects_dir)
labels_lh, labels_rh = stc_to_label(stc, src='sample', smooth=False,
connected=False,
subjects_dir=subjects_dir)
assert_true(len(labels_lh) > 1)
assert_true(len(labels_rh) > 1)
# with smooth='patch'
with warnings.catch_warnings(record=True) as w: # connectedness warning
warnings.simplefilter('always')
labels_patch = stc_to_label(stc, src=src, smooth=True)
assert_equal(len(w), 1)
assert_equal(len(labels_patch), len(labels1))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
示例3: test_stc_to_label
def test_stc_to_label():
"""Test stc_to_label
"""
src = read_source_spaces(src_fname)
stc = read_source_estimate(stc_fname)
os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
labels1 = stc_to_label(stc, src='sample', smooth=3)
labels2 = stc_to_label(stc, src=src, smooth=3)
assert_true(len(labels1) == len(labels2))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
示例4: test_stc_to_label
def test_stc_to_label():
"""Test stc_to_label."""
src = read_source_spaces(fwd_fname)
src_bad = read_source_spaces(src_bad_fname)
stc = read_source_estimate(stc_fname, 'sample')
os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
labels1 = _stc_to_label(stc, src='sample', smooth=3)
labels2 = _stc_to_label(stc, src=src, smooth=3)
assert_equal(len(labels1), len(labels2))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
with pytest.warns(RuntimeWarning, match='have holes'):
labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True,
connected=True)
pytest.raises(ValueError, stc_to_label, stc, 'sample', smooth=True,
connected=True)
pytest.raises(RuntimeError, stc_to_label, stc, smooth=True, src=src_bad,
connected=True)
assert_equal(len(labels_lh), 1)
assert_equal(len(labels_rh), 1)
# test getting tris
tris = labels_lh[0].get_tris(src[0]['use_tris'], vertices=stc.vertices[0])
pytest.raises(ValueError, spatial_tris_connectivity, tris,
remap_vertices=False)
connectivity = spatial_tris_connectivity(tris, remap_vertices=True)
assert (connectivity.shape[0] == len(stc.vertices[0]))
# "src" as a subject name
pytest.raises(TypeError, stc_to_label, stc, src=1, smooth=False,
connected=False, subjects_dir=subjects_dir)
pytest.raises(ValueError, stc_to_label, stc, src=SourceSpaces([src[0]]),
smooth=False, connected=False, subjects_dir=subjects_dir)
pytest.raises(ValueError, stc_to_label, stc, src='sample', smooth=False,
connected=True, subjects_dir=subjects_dir)
pytest.raises(ValueError, stc_to_label, stc, src='sample', smooth=True,
connected=False, subjects_dir=subjects_dir)
labels_lh, labels_rh = stc_to_label(stc, src='sample', smooth=False,
connected=False,
subjects_dir=subjects_dir)
assert (len(labels_lh) > 1)
assert (len(labels_rh) > 1)
# with smooth='patch'
with pytest.warns(RuntimeWarning, match='have holes'):
labels_patch = stc_to_label(stc, src=src, smooth=True)
assert len(labels_patch) == len(labels1)
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
示例5: test_stc_to_label
def test_stc_to_label():
"""Test stc_to_label
"""
src = read_source_spaces(src_fname)
stc = SourceEstimate(stc_fname)
os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
labels1 = stc_to_label(stc, src='sample', smooth=3)
labels2 = stc_to_label(stc, src=src, smooth=3)
assert_true(len(labels1) == len(labels2))
for l1, l2 in zip(labels1, labels2):
for key in l1.keys():
if key in ['comment', 'hemi']:
assert_true(l1[key] == l1[key])
else:
assert_array_almost_equal(l1[key], l2[key], 4)
示例6: apply_rois
def apply_rois(fn_stc, tmin, tmax, thr, min_subject='fsaverage'):
#fn_avg = subjects_dir+'/fsaverage/%s_ROIs/%s-lh.stc' %(method,evt_st)
stc_avg = mne.read_source_estimate(fn_stc)
stc_avg = stc_avg.crop(tmin, tmax)
src_pow = np.sum(stc_avg.data ** 2, axis=1)
stc_avg.data[src_pow < np.percentile(src_pow, thr)] = 0.
fn_src = subjects_dir+'/%s/bem/fsaverage-ico-5-src.fif' %min_subject
src_inv = mne.read_source_spaces(fn_src)
func_labels_lh, func_labels_rh = mne.stc_to_label(
stc_avg, src=src_inv, smooth=True,
subjects_dir=subjects_dir,
connected=True)
# Left hemisphere definition
i = 0
labels_path = fn_stc[:fn_stc.rfind('-')] + '/ini'
reset_directory(labels_path)
while i < len(func_labels_lh):
func_label = func_labels_lh[i]
func_label.save(labels_path + '/ROI_%d' %(i))
i = i + 1
# right hemisphere definition
j = 0
while j < len(func_labels_rh):
func_label = func_labels_rh[j]
func_label.save(labels_path + '/ROI_%d' %(j))
j = j + 1
示例7: apply_rois
def apply_rois(fn_stc_list, event, min_subject='fsaverage', thr=0.85):
"""
Compute regions of interest (ROI) based on events
----------
fn_stc : string
evoked and morphed STC.
event: string
event of the related STC.
tmin, tmax: float
segment for ROIs definition.
min_subject: string
the subject as the common brain space.
thr: float or int
threshold of STC used for ROI identification.
"""
#from scipy.signal import detrend
#from scipy.stats.mstats import zscore
fnlist = get_files_from_list(fn_stc_list)
# loop across all filenames
for fn_stc in fnlist:
# extract the subject infromation from the file name
stc_path = os.path.split(fn_stc)[0]
min_path = subjects_dir + '/%s' % min_subject
fn_src = min_path + '/bem/fsaverage-ico-5-src.fif'
# Make sure the target path is exist
labels_path = stc_path + '/%s/ini' %event
reset_directory(labels_path)
# Read the MNI source space
stc = mne.read_source_estimate(fn_stc)
src_inv = mne.read_source_spaces(fn_src)
stc.lh_data[stc.lh_data < 0.85 * np.max(stc.lh_data)] = 0
stc.rh_data[stc.rh_data < 0.8 * np.max(stc.rh_data)] = 0
#data_lh=np.squeeze(stc.lh_data)
#index_lh = np.argwhere(data_lh)
#stc.lh_data[data_lh<np.percentile(data_lh[index_lh], thr)] = 0
#data_rh=np.squeeze(stc.rh_data)
#index_rh = np.argwhere(data_rh)
#stc.rh_data[data_rh<np.percentile(data_rh[index_rh], thr)] = 0
#non_index = np.argwhere(data)
#stc.data[data<np.percentile(data[non_index], thr)] = 0
func_labels_lh, func_labels_rh = mne.stc_to_label(
stc, src=src_inv, smooth=True,
subjects_dir=subjects_dir,
connected=True)
# Left hemisphere definition
i = 0
while i < len(func_labels_lh):
func_label = func_labels_lh[i]
func_label.save(labels_path + '/%s_%d' %(event, i))
i = i + 1
# right hemisphere definition
j = 0
while j < len(func_labels_rh):
func_label = func_labels_rh[j]
func_label.save(labels_path + '/%s_%d' %(event, j))
j = j + 1
示例8: apply_rois
def apply_rois(fn_stc, event, tmin=0.0, tmax=0.3, min_subject='fsaverage', thr=99):
"""
Compute regions of interest (ROI) based on events
----------
fn_stc : string
evoked and morphed STC.
event: string
event of the related STC.
tmin, tmax: float
segment for ROIs definition.
min_subject: string
the subject as the common brain space.
thr: float or int
threshold of STC used for ROI identification.
"""
fnlist = get_files_from_list(fn_stc)
# loop across all filenames
for ifn_stc in fnlist:
subjects_dir = os.environ['SUBJECTS_DIR']
# extract the subject infromation from the file name
stc_path = os.path.split(ifn_stc)[0]
#name = os.path.basename(fn_stc)
#tri = name.split('_')[1].split('-')[0]
min_path = subjects_dir + '/%s' % min_subject
fn_src = min_path + '/bem/fsaverage-ico-4-src.fif'
# Make sure the target path is exist
labels_path = stc_path + '/%s/' %event
reset_directory(labels_path)
# Read the MNI source space
src_inv = mne.read_source_spaces(fn_src)
stc = mne.read_source_estimate(ifn_stc, subject=min_subject)
bc_stc = stc.copy().crop(tmin, tmax)
src_pow = np.sum(bc_stc.data ** 2, axis=1)
bc_stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
#stc_data = stc_morph.data
#import pdb
#pdb.set_trace()
#zscore stc for ROIs estimation
#d_mu = stc_data.mean(axis=1, keepdims=True)
#d_std = stc_data.std(axis=1, ddof=1, keepdims=True)
#z_data = (stc_data - d_mu)/d_std
func_labels_lh, func_labels_rh = mne.stc_to_label(
bc_stc, src=src_inv, smooth=True,
subjects_dir=subjects_dir,
connected=True)
# Left hemisphere definition
i = 0
while i < len(func_labels_lh):
func_label = func_labels_lh[i]
func_label.save(labels_path + '%s_%s' % (event, str(i)))
i = i + 1
# right hemisphere definition
j = 0
while j < len(func_labels_rh):
func_label = func_labels_rh[j]
func_label.save(labels_path + '%s_%s' % (event, str(j)))
j = j + 1
示例9: apply_rois
def apply_rois(fn_stcs, event='LLst', tmin=0.0, tmax=0.6, tstep=0.05, window=0.2,
fmin=4, fmax=8, thr=99, min_subject='fsaverage'):
"""
Compute regions of interest (ROI) based on events
----------
fn_stcs : the file name of morphed stc.
evt: event related with stc
thr: the percentile of stc's strength
min_subject: the subject for the common brain space.
"""
from mne import read_source_spaces
fnlist = get_files_from_list(fn_stcs)
# loop across all filenames
for fn_stc in fnlist:
name = os.path.basename(fn_stc)
subject = name.split('_')[0]
subjects_dir = os.environ['SUBJECTS_DIR']
min_dir = subjects_dir + '/%s' %min_subject
labels_path = min_dir + '/DICS_ROIs/%s/%s/' %(subject, event)
reset_directory(labels_path)
src = min_dir + '/bem/%s-ico-4-src.fif' %min_subject
src_inv = read_source_spaces(src)
stc = mne.read_source_estimate(fn_stc, subject=min_subject)
stc = stc.crop(tmin, tmax)
src_pow = np.sum(stc.data ** 2, axis=1)
stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
tbeg = tmin
while tbeg < tmax:
tend = tbeg + window
win_stc = stc.copy().crop(tbeg, tend)
stc_data = win_stc.data
src_pow = np.sum(stc_data ** 2, axis=1)
win_stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
func_labels_lh, func_labels_rh = mne.stc_to_label(
win_stc, src=src_inv, smooth=True,
subjects_dir=subjects_dir,
connected=True)
# Left hemisphere definition
i = 0
while i < len(func_labels_lh):
func_label = func_labels_lh[i]
func_label.save(labels_path + '%s_%s_win%.2f_%2f' % (event, str(i), tbeg, tend))
i = i + 1
# right hemisphere definition
j = 0
while j < len(func_labels_rh):
func_label = func_labels_rh[j]
func_label.save(labels_path + '%s_%s_win%2f_%2f' % (event, str(j), tbeg, tend))
j = j + 1
tbeg = tbeg + tstep
示例10: apply_rois
def apply_rois(fn_stcs, evt='LLst', tmin=0.05, tmax=0.25, thr=99, min_subject='fsaverage'):
"""
Compute regions of interest (ROI) based on events
----------
fn_stcs : the file name of morphed stc.
evt: event related with stc
thr: the percentile of stc's strength
min_subject: the subject for the common brain space.
"""
from mne import read_source_spaces
fnlist = get_files_from_list(fn_stcs)
# loop across all filenames
for fn_stc in fnlist:
name = os.path.basename(fn_stc)
subject = name.split('_')[0]
subjects_dir = os.environ['SUBJECTS_DIR']
min_dir = subjects_dir + '/%s' %min_subject
labels_path = min_dir + '/DICS_ROIs/%s/%s/' %(subject, evt)
reset_directory(labels_path)
src = min_dir + '/bem/%s-ico-4-src.fif' %min_subject
src_inv = read_source_spaces(src)
stc = mne.read_source_estimate(fn_stc, subject=min_subject)
stc = stc.crop(tmin, tmax)
src_pow = np.sum(stc.data ** 2, axis=1)
stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
#stc_data = stc_morph.data
#import pdb
#pdb.set_trace()
#zscore stc for ROIs estimation
#d_mu = stc_data.mean(axis=1, keepdims=True)
#d_std = stc_data.std(axis=1, ddof=1, keepdims=True)
#z_data = (stc_data - d_mu)/d_std
func_labels_lh, func_labels_rh = mne.stc_to_label(
stc, src=src_inv, smooth=True,
subjects_dir=subjects_dir,
connected=True)
# Left hemisphere definition
i = 0
while i < len(func_labels_lh):
func_label = func_labels_lh[i]
func_label.save(labels_path + '%s_%s' % (evt, str(i)))
i = i + 1
# right hemisphere definition
j = 0
while j < len(func_labels_rh):
func_label = func_labels_rh[j]
func_label.save(labels_path + '%s_%s' % (evt, str(j)))
j = j + 1
示例11: apply_rois
def apply_rois(fn_stc, tmin, tmax, thr, min_subject='fsaverage'):
'''
Make ROIs using the common STCs.
Parameters
----------
fn_stc: string.
The path of the common STCs
tmin, tmax: float (s).
The interest time range.
thr: float or int
The percentile of STCs strength.
min_subject: string.
The common subject.
'''
stc_avg = mne.read_source_estimate(fn_stc)
stc_avg = stc_avg.crop(tmin, tmax)
src_pow = np.sum(stc_avg.data ** 2, axis=1)
stc_avg.data[src_pow < np.percentile(src_pow, thr)] = 0.
fn_src = subjects_dir+'/%s/bem/fsaverage-ico-5-src.fif' %min_subject
src_inv = mne.read_source_spaces(fn_src)
func_labels_lh, func_labels_rh = mne.stc_to_label(
stc_avg, src=src_inv, smooth=True,
subjects_dir=subjects_dir,
connected=True)
# Left hemisphere definition
i = 0
labels_path = fn_stc[:fn_stc.rfind('-')] + '/ini'
reset_directory(labels_path)
while i < len(func_labels_lh):
func_label = func_labels_lh[i]
func_label.save(labels_path + '/ROI_%d' %(i))
i = i + 1
# right hemisphere definition
j = 0
while j < len(func_labels_rh):
func_label = func_labels_rh[j]
func_label.save(labels_path + '/ROI_%d' %(j))
j = j + 1
示例12:
mean_data = np.mean(np.asarray([s.data for s in stc]), axis=0)
stc_mean = mne.SourceEstimate(
mean_data, stc[0].vertices, tmin=stc[0].tmin, tstep=stc[0].tstep)
# use the stc_mean to generate a functional label
# region growing is halted at 60% of the peak value within the
# anatomical label / ROI specified by aparc_label_name
# calc lh label
stc_mean_label = stc_mean.in_label(label_lh)
data = np.abs(stc_mean_label.data)
stc_mean_label.data[data < 0.7 * np.max(data)] = 0.
func_labels_lh, _ = mne.stc_to_label(
stc_mean_label,
src=src,
smooth=True,
subjects_dir=subjects_dir,
connected=True)
# take first as func_labels are ordered based on maximum values in stc
func_label_lh = func_labels_lh[0]
# calc rh label
stc_mean_label = stc_mean.in_label(label_rh)
data = np.abs(stc_mean_label.data)
stc_mean_label.data[data < 0.7 * np.max(data)] = 0.
_, func_labels_rh = mne.stc_to_label(
stc_mean_label,
src=src,
smooth=True,
subjects_dir=subjects_dir,
示例13:
stc_mean = stc.copy().crop(tmin, tmax).mean()
# use the stc_mean to generate a functional label
# region growing is halted at 60% of the peak value within the
# anatomical label / ROI specified by aparc_label_name
label = mne.read_labels_from_annot(subject, parc='aparc',
subjects_dir=subjects_dir,
regexp=aparc_label_name)[0]
stc_mean_label = stc_mean.in_label(label)
data = np.abs(stc_mean_label.data)
stc_mean_label.data[data < 0.6 * np.max(data)] = 0.
# 8.5% of original source space vertices were omitted during forward
# calculation, suppress the warning here with verbose='error'
func_labels, _ = mne.stc_to_label(stc_mean_label, src=src, smooth=True,
subjects_dir=subjects_dir, connected=True,
verbose='error')
# take first as func_labels are ordered based on maximum values in stc
func_label = func_labels[0]
# load the anatomical ROI for comparison
anat_label = mne.read_labels_from_annot(subject, parc='aparc',
subjects_dir=subjects_dir,
regexp=aparc_label_name)[0]
# extract the anatomical time course for each label
stc_anat_label = stc.in_label(anat_label)
pca_anat = stc.extract_label_time_course(anat_label, src, mode='pca_flip')[0]
stc_func_label = stc.in_label(func_label)
示例14:
#temp = temp3.in_label(TPOJ1_label_lh)
#w_vertices = np.unique(np.append(w_vertices, temp.vertices[0]))
""" V1 """
temp = temp3.in_label(V1_label_lh)
v1_vertices = temp.vertices[0]
###############################################################################
""" Just to visualize the new ROI """
mask = np.logical_and(times >= 0.08, times <= 0.12)
lh_label = temp3.in_label(V1_label_lh)
data = np.max(lh_label.data[:,mask],axis=1)
lh_label.data[data < 1.72] = 0.
temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False,
subjects_dir=fs_dir, connected=False)
temp = temp3.in_label(temp_labels)
v1_vertices = temp.vertices[0]
new_label = mne.Label(v1_vertices, hemi='lh')
brain3_1.add_label(new_label, borders=True, color='k')
###############################################################################
mask = np.logical_and(times >= 0.38, times <= 0.42)
lh_label = temp3.in_label(TE2p_label_lh)
data = np.mean(lh_label.data[:,mask],axis=1)
lh_label.data[data < 1.72] = 0.
temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False,
subjects_dir=fs_dir, connected=False)
temp = temp3.in_label(temp_labels)
ventral_vertices = temp.vertices[0]
示例15: apply_rois
def apply_rois(fn_stc, event, tmin=0.0, tmax=0.3, tstep=0.05, window=0.2,
min_subject='fsaverage', thr=99):
"""
Compute regions of interest (ROI) based on events
----------
fn_stc : string
evoked and morphed STC.
event: string
event of the related STC.
tmin, tmax: float
segment for ROIs definition.
min_subject: string
the subject as the common brain space.
thr: float or int
threshold of STC used for ROI identification.
"""
from scipy.signal import detrend
from scipy.stats.mstats import zscore
fnlist = get_files_from_list(fn_stc)
# loop across all filenames
for ifn_stc in fnlist:
subjects_dir = os.environ['SUBJECTS_DIR']
# extract the subject infromation from the file name
stc_path = os.path.split(ifn_stc)[0]
#name = os.path.basename(fn_stc)
#tri = name.split('_')[1].split('-')[0]
min_path = subjects_dir + '/%s' % min_subject
fn_src = min_path + '/bem/fsaverage-ico-4-src.fif'
# Make sure the target path is exist
labels_path = stc_path + '/%s/' %event
reset_directory(labels_path)
# Read the MNI source space
src_inv = mne.read_source_spaces(fn_src)
stc = mne.read_source_estimate(ifn_stc, subject=min_subject)
#stc = stc.crop(tmin, tmax)
#src_pow = np.sum(stc.data ** 2, axis=1)
#stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
stc = stc.crop(tmin, tmax)
cal_data = stc.data
dt_data = detrend(cal_data, axis=-1)
zc_data = zscore(dt_data, axis=-1)
src_pow = np.sum(zc_data ** 2, axis=1)
stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
tbeg = tmin
count = 1
while tbeg < tmax:
tend = tbeg + window
if tend > tmax:
break
win_stc = stc.copy().crop(tbeg, tend)
stc_data = win_stc.data
src_pow = np.sum(stc_data ** 2, axis=1)
win_stc.data[src_pow < np.percentile(src_pow, thr)] = 0.
func_labels_lh, func_labels_rh = mne.stc_to_label(
win_stc, src=src_inv, smooth=True,
subjects_dir=subjects_dir,
connected=True)
# Left hemisphere definition
i = 0
while i < len(func_labels_lh):
func_label = func_labels_lh[i]
func_label.save(labels_path + '%s_%s_win%d' % (event, str(i), count))
i = i + 1
# right hemisphere definition
j = 0
while j < len(func_labels_rh):
func_label = func_labels_rh[j]
func_label.save(labels_path + '%s_%s_win%d' % (event, str(j), count))
j = j + 1
tbeg = tbeg + tstep
count = count + 1