当前位置: 首页>>代码示例>>Python>>正文


Python mne.set_log_level函数代码示例

本文整理汇总了Python中mne.set_log_level函数的典型用法代码示例。如果您正苦于以下问题:Python set_log_level函数的具体用法?Python set_log_level怎么用?Python set_log_level使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了set_log_level函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: interpolate_bads

def interpolate_bads(inst, picks, dots=None, reset_bads=True, mode='accurate'):
    """Interpolate bad MEG and EEG channels."""
    import mne
    # to prevent cobyla printf error
    # XXX putting to critical for now unless better solution
    # emerges
    verbose = mne.set_log_level('CRITICAL', return_old_level=True)

    eeg_picks = set(pick_types(inst.info, meg=False, eeg=True, exclude=[]))
    eeg_picks_interp = [p for p in picks if p in eeg_picks]
    if len(eeg_picks_interp) > 0:
        _interpolate_bads_eeg(inst, picks=eeg_picks_interp)

    meg_picks = set(pick_types(inst.info, meg=True, eeg=False, exclude=[]))
    meg_picks_interp = [p for p in picks if p in meg_picks]
    if len(meg_picks_interp) > 0:
        _interpolate_bads_meg_fast(inst, picks=meg_picks_interp,
                                   dots=dots, mode=mode)

    if reset_bads is True:
        inst.info['bads'] = []

    mne.set_log_level(verbose)

    return inst
开发者ID:autoreject,项目名称:autoreject,代码行数:25,代码来源:utils.py

示例2: write_mnefiff

def write_mnefiff(data, filename):
    """Export data to MNE using FIFF format.

    Parameters
    ----------
    data : instance of ChanTime
        data with only one trial
    filename : path to file
        file to export to (include '.mat')

    Notes
    -----
    It cannot store data larger than 2 GB.
    The data is assumed to have only EEG electrodes.
    It overwrites a file if it exists.
    """
    from mne import create_info, set_log_level
    from mne.io import RawArray

    set_log_level(WARNING)

    TRIAL = 0
    info = create_info(list(data.axis['chan'][TRIAL]), data.s_freq, ['eeg', ] *
                       data.number_of('chan')[TRIAL])

    UNITS = 1e-6  # mne wants data in uV
    fiff = RawArray(data.data[0] * UNITS, info)

    if data.attr['chan']:
        fiff.set_channel_positions(data.attr['chan'].return_xyz(),
                                   data.attr['chan'].return_label())

    fiff.save(filename, overwrite=True)
开发者ID:gpiantoni,项目名称:phypno,代码行数:33,代码来源:mnefiff.py

示例3: run

def run():
    """Run command."""
    from mne.commands.utils import get_optparser

    parser = get_optparser(__file__)

    parser.add_option('--input', dest='input_fname',
                      help='Input data file name', metavar='filename')
    parser.add_option('--mrk', dest='mrk_fname',
                      help='MEG Marker file name', metavar='filename')
    parser.add_option('--elp', dest='elp_fname',
                      help='Headshape points file name', metavar='filename')
    parser.add_option('--hsp', dest='hsp_fname',
                      help='Headshape file name', metavar='filename')
    parser.add_option('--stim', dest='stim',
                      help='Colon Separated Stimulus Trigger Channels',
                      metavar='chs')
    parser.add_option('--slope', dest='slope', help='Slope direction',
                      metavar='slope')
    parser.add_option('--stimthresh', dest='stimthresh', default=1,
                      help='Threshold value for trigger channels',
                      metavar='value')
    parser.add_option('--output', dest='out_fname',
                      help='Name of the resulting fiff file',
                      metavar='filename')
    parser.add_option('--debug', dest='debug', action='store_true',
                      default=False,
                      help='Set logging level for terminal output to debug')

    options, args = parser.parse_args()

    if options.debug:
        mne.set_log_level('debug')

    input_fname = options.input_fname
    if input_fname is None:
        with ETSContext():
            mne.gui.kit2fiff()
        sys.exit(0)

    hsp_fname = options.hsp_fname
    elp_fname = options.elp_fname
    mrk_fname = options.mrk_fname
    stim = options.stim
    slope = options.slope
    stimthresh = options.stimthresh
    out_fname = options.out_fname

    if isinstance(stim, str):
        stim = map(int, stim.split(':'))

    raw = read_raw_kit(input_fname=input_fname, mrk=mrk_fname, elp=elp_fname,
                       hsp=hsp_fname, stim=stim, slope=slope,
                       stimthresh=stimthresh)

    raw.save(out_fname)
    raw.close()
    sys.exit(0)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:58,代码来源:mne_kit2fiff.py

示例4: test_morphing

def test_morphing():
    mne.set_log_level('warning')
    sss = datasets._mne_source_space('fsaverage', 'ico-4', subjects_dir)
    vertices_to = [sss[0]['vertno'], sss[1]['vertno']]
    ds = datasets.get_mne_sample(-0.1, 0.1, src='ico', sub='index==0', stc=True)
    stc = ds['stc', 0]
    morph_mat = mne.compute_morph_matrix('sample', 'fsaverage', stc.vertno,
                                         vertices_to, None, subjects_dir)
    ndvar = ds['src']

    morphed_ndvar = morph_source_space(ndvar, 'fsaverage')
    morphed_stc = mne.morph_data_precomputed('sample', 'fsaverage', stc,
                                             vertices_to, morph_mat)
    assert_array_equal(morphed_ndvar.x[0], morphed_stc.data)
    morphed_stc_ndvar = load.fiff.stc_ndvar([morphed_stc], 'fsaverage', 'ico-4',
                                            subjects_dir, 'src', parc=None)
    assert_dataobj_equal(morphed_ndvar, morphed_stc_ndvar)
开发者ID:awjamison,项目名称:Eelbrain,代码行数:17,代码来源:test_mne.py

示例5: interpolate_bads

def interpolate_bads(inst, reset_bads=True, mode='accurate'):
    """Interpolate bad MEG and EEG channels.
    """
    import mne
    from mne.channels.interpolation import _interpolate_bads_eeg
    mne.set_log_level('WARNING')  # to prevent cobyla printf error

    if getattr(inst, 'preload', None) is False:
        raise ValueError('Data must be preloaded.')

    _interpolate_bads_eeg(inst)
    _interpolate_bads_meg_fast(inst, mode=mode)

    if reset_bads is True:
        inst.info['bads'] = []

    return inst
开发者ID:dengemann,项目名称:autoreject,代码行数:17,代码来源:utils.py

示例6: create_3Dmatrix

def create_3Dmatrix(epochs_dim, ch_type, input_filename, input_filename_trial, output_filename=None):
    
    mne.set_log_level('WARNING')
    raw = mne.fiff.Raw(input_filename)

    datatrial = pickle.load(open(input_filename_trial))
    trigger_times = datatrial['trigger_times']
    trigger_decimal = datatrial['trigger_decimal']
    coi = datatrial['coi']
    
    print
    print "Get the indexes of just the MEG channels"
    picks = mne.fiff.pick_types(raw.info, meg=ch_type['meg'], eeg=ch_type['eeg'], stim=ch_type['stim'], exclude=ch_type['exclude']) #only meg channels
    
    events = np.vstack([trigger_times, np.zeros(len(trigger_times), dtype=np.int), trigger_decimal]).T

    print "Extracting Epochs for each condition for the contrast."
    baseline = (None, 0) # means from the first instant to t = 0
    reject = {}
    tmin = epochs_dim[0]
    tmax = epochs_dim[1]
    epochs = mne.Epochs(raw, events, event_id=None, tmin=tmin, tmax=tmax, proj=True, picks=picks, baseline=baseline, preload=False, reject=reject)

    X = epochs.get_data()
    y = epochs.events[:,2]
    label = np.zeros(len(y))
    for i, yi in enumerate(y):
        if np.sum(yi == coi[0]):
            label[i] = 1
            
    if output_filename == None:
	filename_save = input_filename_trial.split('.')[0]+'_3D.pickle'
    else:
	filename_save = os.path.abspath(output_filename)

    print "Saving to:", filename_save
    pickle.dump({'X': X,
	         'y': label,
	         'tmin': tmin,
	         'sfreq': raw.info['sfreq']
	         }, open(filename_save, 'w'),
	        protocol = pickle.HIGHEST_PROTOCOL)
                
    return filename_save
开发者ID:baothien,项目名称:tiensy,代码行数:44,代码来源:NILabMNELibrary.py

示例7: _fast_map_meg_channels

def _fast_map_meg_channels(info, pick_from, pick_to,
                           dots=None, mode='fast'):
    from mne.io.pick import pick_info
    from mne.forward._field_interpolation import _setup_dots
    from mne.forward._field_interpolation import _compute_mapping_matrix
    from mne.forward._make_forward import _create_meg_coils, _read_coil_defs
    from mne.bem import _check_origin

    miss = 1e-4  # Smoothing criterion for MEG

    # XXX: hack to silence _compute_mapping_matrix
    verbose = mne.get_config('MNE_LOGGING_LEVEL', 'INFO')
    mne.set_log_level('WARNING')

    info_from = pick_info(info, pick_from, copy=True)
    templates = _read_coil_defs()
    coils_from = _create_meg_coils(info_from['chs'], 'normal',
                                   info_from['dev_head_t'], templates)
    my_origin = _check_origin((0., 0., 0.04), info_from)
    int_rad, noise, lut_fun, n_fact = _setup_dots(mode, coils_from, 'meg')

    # This function needs a clean input. It hates the presence of other
    # channels than MEG channels. Make sure all is picked.
    if dots is None:
        dots = self_dots, cross_dots = _compute_dots(info, mode=mode)
    else:
        self_dots, cross_dots = dots

    self_dots, cross_dots = _pick_dots(dots, pick_from, pick_to)

    ch_names = [c['ch_name'] for c in info_from['chs']]
    fmd = dict(kind='meg', ch_names=ch_names,
               origin=my_origin, noise=noise, self_dots=self_dots,
               surface_dots=cross_dots, int_rad=int_rad, miss=miss)

    fmd['data'] = _compute_mapping_matrix(fmd, info_from)
    mne.set_log_level(verbose)

    return fmd['data']
开发者ID:autoreject,项目名称:autoreject,代码行数:39,代码来源:utils.py

示例8: __init__

    def __init__(self, subject, settings=dict()):
        self.subject = subject
        self.settings = settings

        if 'debug' in settings:
            configure_custom(settings['debug'])
        else:
            configure_custom(debug=True)

        if 'mne_log_level' in settings:
            mne.set_log_level(settings['mne_log_level'])
        else:
            mne.set_log_level('INFO')

        if 'sfreq' in settings:
            self.downsample_sfreq = settings['sfreq']
        else:
            self.downsample_sfreq = 64

        if 'layout' in settings:
            self.layout = settings['layout']
        else:
            self.layout = mne.channels.read_layout('biosemi.lay')

        if 'data_root' in settings:
            self.data_root = settings['data_root']
        else:
            self.data_root = os.path.join(deepthought.DATA_PATH, 'OpenMIIR')

        # load stimuli metadata version
        self.stimuli_version = get_stimuli_version(subject)

        # initial state
        self.raw = None
        self.ica = None

        self.filtered = False
        self.downsampled = False
开发者ID:Qi0116,项目名称:deepthought,代码行数:38,代码来源:pipeline.py

示例9:

# of filenames for various things we'll be using.
import os.path as op
import numpy as np
from scipy.signal import welch, coherence
from mayavi import mlab
from matplotlib import pyplot as plt

import mne
from mne.simulation import simulate_raw
from mne.datasets import sample
from mne.minimum_norm import make_inverse_operator, apply_inverse
from mne.time_frequency import csd_morlet
from mne.beamformer import make_dics, apply_dics_csd

# Suppress irrelevant output
mne.set_log_level('ERROR')

# We use the MEG and MRI setup from the MNE-sample dataset
data_path = sample.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
mri_path = op.join(subjects_dir, 'sample')

# Filenames for various files we'll be using
meg_path = op.join(data_path, 'MEG', 'sample')
raw_fname = op.join(meg_path, 'sample_audvis_raw.fif')
trans_fname = op.join(meg_path, 'sample_audvis_raw-trans.fif')
src_fname = op.join(mri_path, 'bem/sample-oct-6-src.fif')
bem_fname = op.join(mri_path, 'bem/sample-5120-5120-5120-bem-sol.fif')
fwd_fname = op.join(meg_path, 'sample_audvis-meg-eeg-oct-6-fwd.fif')
cov_fname = op.join(meg_path, 'sample_audvis-cov.fif')
开发者ID:jdammers,项目名称:mne-python,代码行数:30,代码来源:plot_dics.py

示例10: plot_group_fourierICA

def plot_group_fourierICA(fn_groupICA_obj,
                          stim_id=1, stim_delay=0,
                          resp_id=None,
                          corr_event_picking=None,
                          global_scaling=True,
                          subjects_dir=None,
                          bar_plot=False):

    """
    Interface to plot the results from group FourierICA

        Parameters
        ----------
        fn_groupICA_obj: filename of the group ICA object
        stim_id: Id of the event of interest to be considered in
            the stimulus channel. Only of interest if 'stim_name'
            is set
            default: event_id=1
        stim_delay: stimulus delay in milliseconds
            default: stim_delay=0
        resp_id: Response IDs for correct event estimation. Note:
            Must be in the order corresponding to the 'event_id'
            default: resp_id=None
        corr_event_picking: string
            if set should contain the complete python path and
            name of the function used to identify only the correct events
            default: corr_event_picking=None
        subjects_dir: string
            If the subjects directory is not confirm with
            the system variable 'SUBJECTS_DIR' parameter should be set
            default: subjects_dir=None
        bar_plot: boolean
            If set the results of the time-frequency analysis
            are shown as bar plot. This option is recommended
            when FourierICA was applied to resting-state data
            default: bar_plot=False
    """


    # ------------------------------------------
    # import necessary modules
    # ------------------------------------------
    from jumeg.decompose.fourier_ica_plot import plot_results_src_space
    from mne import set_log_level
    from os.path import exists
    from pickle import dump, load

    # set log level to 'WARNING'
    set_log_level('WARNING')


    # ------------------------------------------
    # read in group FourierICA object
    # ------------------------------------------
    with open(fn_groupICA_obj, "rb") as filehandler:
        groupICA_obj = load(filehandler)

    icasso_obj = groupICA_obj['icasso_obj']
    win_length_sec = icasso_obj.tmax_win - icasso_obj.tmin_win
    temp_profile_names = ["Event-ID %i" % i for i in groupICA_obj['icasso_obj'].event_id]

    # ------------------------------------------
    # check if time-courses already exist
    # ------------------------------------------
    fn_temporal_envelope = fn_groupICA_obj[:-4] + '_temporal_envelope.obj'
    # generate time courses if they do not exist
    if not exists(fn_temporal_envelope):
        # import necessary modules
        from jumeg.decompose.group_ica import get_group_fourierICA_time_courses

        # generate time courses
        temporal_envelope, src_loc, vert, sfreq = \
            get_group_fourierICA_time_courses(groupICA_obj, event_id=stim_id,
                                              stim_delay=stim_delay, resp_id=resp_id,
                                              corr_event_picking=corr_event_picking,
                                              unfiltered=False, baseline=(None, 0))

        # save data
        temp_env_obj = {'temporal_envelope': temporal_envelope,
                        'src_loc': src_loc, 'vert': vert, 'sfreq': sfreq}
        with open(fn_temporal_envelope, "wb") as filehandler:
            dump(temp_env_obj, filehandler)

    # when data are stored read them in
    else:
        # read data in
        with open(fn_temporal_envelope, "rb") as filehandler:
            temp_env_obj = load(filehandler)

        # get data
        temporal_envelope = temp_env_obj['temporal_envelope']
        src_loc = temp_env_obj['src_loc']
        vert = temp_env_obj['vert']


    # ------------------------------------------
    # check if classification already exists
    # ------------------------------------------
    if groupICA_obj.has_key('classification') and\
            groupICA_obj.has_key('mni_coords') and\
#.........这里部分代码省略.........
开发者ID:d-van-de-velden,项目名称:jumeg,代码行数:101,代码来源:group_ica.py

示例11:

    parser.add_argument('--reject', help=help_reject, action='store_true')
    parser.add_argument('--nharm', type=int, default=default_nharm,
                        choices=[0, 1, 2, 3, 4], help=help_nharm)
    parser.add_argument('--epoch_start', type=float, default=None,
                        help=help_epoch_start)
    parser.add_argument('--epoch_end', type=float, default=None,
                        help=help_epoch_end)
    parser.add_argument('--plot_snr', help=help_plot_snr, action='store_true')
    parser.add_argument('--stim_channel', help=help_stim_channel, type=str,
                        default=None)
    parser.add_argument('--stim_mask', type=int, default=None,
                        help=help_sti_mask)

    args = parser.parse_args()

    mne.set_log_level('ERROR')  # reduce mne output

    if args.epochs_file:
        fnbase = os.path.basename(os.path.splitext(args.epochs_file)[0])
    else:
        fnbase = os.path.basename(os.path.splitext(args.snr_file)[0])
    verbose = False

    """ Load cHPI SNR file. It is typically not maxfiltered, so ignore
    MaxShield warnings. """
    raw_chpi = mne.io.Raw(args.snr_file, allow_maxshield='yes',
                          verbose=verbose)
    picks = mne.pick_types(raw_chpi.info, meg=True)

    """ If using a separate file for the actual data epochs, load it. """
    if args.epochs_file:
开发者ID:BioMag,项目名称:meg_scripts,代码行数:31,代码来源:chpi_weighted_average.py

示例12: group_fourierICA_src_space


#.........这里部分代码省略.........
            is generated automatically.
            default: fnout=None
        verbose: bool, str, int, or None
            If not None, override default verbose level
            (see mne.verbose).
            default: verbose=True


        Return
        ------
        groupICA_obj: dictionary
            Group ICA information stored in a dictionary. The dictionary
            has following keys:
            'fn_list': List of filenames which where used to estimate the
                group ICA
            'W_orig': estimated de-mixing matrix
            'A_orig': estimated mixing matrix
            'quality': quality index of the clustering between
                components belonging to one cluster
                (between 0 and 1; 1 refers to small clusters,
                i.e., components in one cluster have a highly similar)
            'icasso_obj': ICASSO object. For further information
                please have a look into the ICASSO routine
            'fourier_ica_obj': FourierICA object. For further information
                please have a look into the FourierICA routine
        fnout: string
            filename where the 'groupICA_obj' is stored
    """

    # ------------------------------------------
    # import necessary modules
    # ------------------------------------------
    from jumeg.decompose.icasso import JuMEG_icasso
    from mne import set_log_level
    import numpy as np
    from os.path import dirname, join
    from pickle import dump

    # set log level to 'WARNING'
    set_log_level('WARNING')


    # ------------------------------------------
    # check input parameter
    # ------------------------------------------
    # filenames
    if isinstance(fname_raw, list):
        fn_list = fname_raw
    else:
        fn_list = [fname_raw]


    # -------------------------------------------
    # set some path parameter
    # -------------------------------------------
    fn_inv = []
    for fn_raw in fn_list:
        fn_inv.append(fn_raw[:fn_raw.rfind('-raw.fif')] + inv_pattern)


    # ------------------------------------------
    # apply FourierICA combined with ICASSO
    # ------------------------------------------
    icasso_obj = JuMEG_icasso(nrep=nrep, fn_inv=fn_inv,
                              src_loc_method=src_loc_method,
                              morph2fsaverage=True,
开发者ID:d-van-de-velden,项目名称:jumeg,代码行数:67,代码来源:group_ica.py

示例13:

==============================
Generate simulated evoked data
==============================
compare the regression results between my method and MNE, using the wrapped version
"""

import numpy as np
import matplotlib.pyplot as plt
import numpy.linalg as la

import mne
from mne.viz import plot_evoked, plot_sparse_source_estimates
from mne.simulation import generate_stc
import matplotlib.pyplot as plt
from mne.inverse_sparse.mxne_optim import _Phi, _PhiT
mne.set_log_level('warning')

 
import os,sys,inspect
# laptop
#os.chdir('/home/yingyang/Dropbox/MEG_source_loc_proj/stft_tree_group_lasso/')
# desktop
os.chdir('/home/ying/Dropbox/MEG_source_loc_proj/STFT_R_git_repo/')
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir+"/Simulation") 
sys.path.insert(0,parentdir + "/Spline_Regression") 
sys.path.insert(0,parentdir + "/MNE_stft")
sys.path.insert(0,currentdir)
from mne.inverse_sparse.mxne_optim import *
from Simulation_real_scale import *
开发者ID:YingYang,项目名称:STFT_R_git_repo,代码行数:31,代码来源:Simulation_real_scale_trial_by_trial_regression_comp.py

示例14: import

from utils import get_data

from config import (
    data_path,
    pyoutput_path,
    subjects,
    paths('report'),
    contrasts,
    open_browser,
    chan_types,
)

report, run_id, _, logger = setup_provenance(script=__file__,
                                                       results_dir=paths('report'))

mne.set_log_level('INFO')

# force separation of magnetometers and gradiometers
if 'meg' in [i['name'] for i in chan_types]:
    chan_types = [dict(name='mag'), dict(name='grad')] + \
                 [dict(name=i['name']) for i in chan_types
                                           if i['name'] != 'meg']
for subject in subjects:

    # Extract events from mat file
    meg_fname = op.join(data_path, subject, 'preprocessed', subject + '_preprocessed')
    bhv_fname = op.join(data_path, subject, 'behavior', subject + '_fixed.mat')
    epochs, events = get_data(meg_fname, bhv_fname)

    # Apply each contrast
    all_epochs = [[]] * len(contrasts)
开发者ID:SherazKhan,项目名称:Paris_orientation-decoding,代码行数:31,代码来源:run_evoked_contrast.py

示例15: fit

    def fit(self, fn_raw, stim_name=None, event_id=1,
            tmin_stim=0.0, tmax_stim=1.0, flow=4.0, fhigh=34.0,
            pca_dim=0.90, max_iter=10000, conv_eps=1e-16,
            verbose=True):

        """
        Perform ICASSO estimation. ICASSO is based on running ICA
        multiple times with slightly different conditions and
        clustering the obtained components. Note, here FourierICA
        is applied


            Parameters
            ----------
            fn_raw: filename of the input data (expect fif-file).
            stim_name: name of the stimulus channel. Note, for
                applying FourierCIA data are chopped around stimulus
                onset. If not set data are chopped in overlapping
                windows
                default: stim_names=None
            event_id: Id of the event of interest to be considered in
                the stimulus channel. Only of interest if 'stim_name'
                is set
                default: event_id=1
            tmin_stim: time of interest prior to stimulus onset.
                Important for generating epochs to apply FourierICA
                default = 0.0
            tmax_stim: time of interest after stimulus onset.
                Important for generating epochs to apply FourierICA
                default = 1.0
            flow: lower frequency border for estimating the optimal
                de-mixing matrix using FourierICA
                default: flow=4.0
            fhigh: upper frequency border for estimating the optimal
                de-mixing matrix using FourierICA
                default: fhigh=34.0
                Note: here default flow and fhigh are choosen to
                   contain:
                   - theta (4-7Hz)
                   - low (7.5-9.5Hz) and high alpha (10-12Hz),
                   - low (13-23Hz) and high beta (24-34Hz)
            pca_dim: The number of PCA components used to apply FourierICA.
                If pca_dim > 1 this refers to the exact number of components.
                If between 0 and 1 pca_dim refers to the variance which
                should be explained by the chosen components
                default: pca_dim=0.9
            max_iter: maximum number od iterations used in FourierICA
                default: max_iter=10000
            conv_eps: iteration stops when weight changes are smaller
                then this number
                default: conv_eps = 1e-16
            verbose: bool, str, int, or None
                If not None, override default verbose level
                (see mne.verbose).
                default: verbose=True

            Returns
            -------
            W: estimated optimal de-mixing matrix
            A: estimated mixing matrix
            Iq: quality index of the clustering between
                components belonging to one cluster
                (between 0 and 1; 1 refers to small clusters,
                i.e., components in one cluster a highly similar)
            fourier_ica_obj: FourierICA object. For further information
                please have a look into the FourierICA routine
        """

        # ------------------------------------------
        # import necessary module
        # ------------------------------------------
        from fourier_ica import JuMEG_fourier_ica
        from mne import find_events, pick_types, set_log_level
        from mne.io import Raw


        # set log level to 'WARNING'
        set_log_level('WARNING')

        # ------------------------------------------
        # prepare data to apply FourierICA
        # ------------------------------------------
        meg_raw = Raw(fn_raw, preload=True)
        meg_channels = pick_types(meg_raw.info, meg=True, eeg=False,
                                  eog=False, stim=False, exclude='bads')
        meg_data = meg_raw._data[meg_channels, :]

        if stim_name:
            events = find_events(meg_raw, stim_channel=stim_name, consecutive=True)
            events = events[events[:, 2] == event_id, 0]
        else:
            events = []


        # ------------------------------------------
        # generate FourierICA object
        # ------------------------------------------
        if verbose:
            print ">>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<"
            print ">>>      Performing FourierICA estimation      <<<"
#.........这里部分代码省略.........
开发者ID:VolkanChen,项目名称:jumeg,代码行数:101,代码来源:icasso.py


注:本文中的mne.set_log_level函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。