本文整理汇总了Python中mne.read_selection函数的典型用法代码示例。如果您正苦于以下问题:Python read_selection函数的具体用法?Python read_selection怎么用?Python read_selection使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了read_selection函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_read_selection
def test_read_selection():
"""Test reading of selections."""
# test one channel for each selection
ch_names = ['MEG 2211', 'MEG 0223', 'MEG 1312', 'MEG 0412', 'MEG 1043',
'MEG 2042', 'MEG 2032', 'MEG 0522', 'MEG 1031']
sel_names = ['Vertex', 'Left-temporal', 'Right-temporal', 'Left-parietal',
'Right-parietal', 'Left-occipital', 'Right-occipital',
'Left-frontal', 'Right-frontal']
raw = read_raw_fif(raw_fname)
for i, name in enumerate(sel_names):
sel = read_selection(name)
assert_true(ch_names[i] in sel)
sel_info = read_selection(name, info=raw.info)
assert_equal(sel, sel_info)
# test some combinations
all_ch = read_selection(['L', 'R'])
left = read_selection('L')
right = read_selection('R')
assert_true(len(all_ch) == len(left) + len(right))
assert_true(len(set(left).intersection(set(right))) == 0)
frontal = read_selection('frontal')
occipital = read_selection('Right-occipital')
assert_true(len(set(frontal).intersection(set(occipital))) == 0)
ch_names_new = [ch.replace(' ', '') for ch in ch_names]
raw_new = read_raw_fif(raw_new_fname)
for i, name in enumerate(sel_names):
sel = read_selection(name, info=raw_new.info)
assert_true(ch_names_new[i] in sel)
assert_raises(TypeError, read_selection, name, info='foo')
示例2: _get_data
def _get_data():
"""Read in data used in tests."""
# read forward model
forward = mne.read_forward_solution(fname_fwd)
# read data
raw = mne.io.read_raw_fif(fname_raw, preload=True)
events = mne.read_events(fname_event)
event_id, tmin, tmax = 1, -0.1, 0.15
# decimate for speed
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.pick_types(raw.info, selection=left_temporal_channels)
picks = picks[::2]
raw.pick_channels([raw.ch_names[ii] for ii in picks])
del picks
raw.info.normalize_proj() # avoid projection warnings
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
baseline=(None, 0.), preload=True, reject=reject)
noise_cov = mne.compute_covariance(epochs, tmin=None, tmax=0.)
data_cov = mne.compute_covariance(epochs, tmin=0.01, tmax=0.15)
return epochs, data_cov, noise_cov, forward
示例3: test_lcmv
def test_lcmv():
"""Test LCMV
"""
event_id, tmin, tmax = 1, -0.2, 0.2
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
# Set up pick list: EEG + MEG - bad channels (modify to your needs)
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True,
exclude=raw.info['bads'], selection=left_temporal_channels)
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
evoked = epochs.average()
noise_cov = mne.read_cov(fname_cov)
noise_cov = mne.cov.regularize(noise_cov, evoked.info,
mag=0.05, grad=0.05, eeg=0.1, proj=True)
data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15)
stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.01)
stc_pow = np.sum(stc.data, axis=1)
idx = np.argmax(stc_pow)
max_stc = stc.data[idx]
tmax = stc.times[np.argmax(max_stc)]
assert_true(0.09 < tmax < 0.1)
assert_true(2. < np.max(max_stc) < 3.)
示例4: test_lcmv_raw
def test_lcmv_raw():
"""Test LCMV with raw data
"""
raw, _, _, _, noise_cov, label, forward, _, _, _ =\
_get_data(all_forward=False, epochs=False, data_cov=False)
tmin, tmax = 0, 20
start, stop = raw.time_as_index([tmin, tmax])
# use only the left-temporal MEG channels for LCMV
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.fiff.pick_types(raw.info, meg=True, exclude='bads',
selection=left_temporal_channels)
data_cov = mne.compute_raw_data_covariance(raw, tmin=tmin, tmax=tmax)
stc = lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01, label=label,
start=start, stop=stop, picks=picks)
assert_array_almost_equal(np.array([tmin, tmax]),
np.array([stc.times[0], stc.times[-1]]),
decimal=2)
# make sure we get an stc with vertices only in the lh
vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
assert_true(len(stc.vertno[0]) == len(np.intersect1d(vertno[0],
label.vertices)))
assert_true(len(stc.vertno[1]) == 0)
示例5: _get_data
def _get_data(tmin=-0.1, tmax=0.15, all_forward=True, epochs=True,
epochs_preload=True, data_cov=True):
"""Read in data used in tests."""
label = mne.read_label(fname_label)
events = mne.read_events(fname_event)
raw = mne.io.read_raw_fif(fname_raw, preload=True)
forward = mne.read_forward_solution(fname_fwd)
if all_forward:
forward_surf_ori = _read_forward_solution_meg(
fname_fwd, surf_ori=True)
forward_fixed = _read_forward_solution_meg(
fname_fwd, force_fixed=True, surf_ori=True, use_cps=False)
forward_vol = _read_forward_solution_meg(fname_fwd_vol)
else:
forward_surf_ori = None
forward_fixed = None
forward_vol = None
event_id, tmin, tmax = 1, tmin, tmax
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bad channels
# Set up pick list: MEG - bad channels
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True,
eog=True, ref_meg=False, exclude='bads',
selection=left_temporal_channels)
raw.pick_channels([raw.ch_names[ii] for ii in picks])
raw.info.normalize_proj() # avoid projection warnings
if epochs:
# Read epochs
epochs = mne.Epochs(
raw, events, event_id, tmin, tmax, proj=True,
baseline=(None, 0), preload=epochs_preload,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
if epochs_preload:
epochs.resample(200, npad=0, n_jobs=2)
epochs.crop(0, None)
evoked = epochs.average()
info = evoked.info
else:
epochs = None
evoked = None
info = raw.info
noise_cov = mne.read_cov(fname_cov)
noise_cov['projs'] = [] # avoid warning
with warnings.catch_warnings(record=True): # bad proj
noise_cov = mne.cov.regularize(noise_cov, info, mag=0.05, grad=0.05,
eeg=0.1, proj=True)
if data_cov:
with warnings.catch_warnings(record=True): # too few samples
data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.145)
else:
data_cov = None
return raw, epochs, evoked, data_cov, noise_cov, label, forward,\
forward_surf_ori, forward_fixed, forward_vol
示例6: _get_data
def _get_data(tmin=-0.1, tmax=0.15, all_forward=True, epochs=True,
epochs_preload=True, data_cov=True):
"""Read in data used in tests
"""
label = mne.read_label(fname_label)
events = mne.read_events(fname_event)
raw = mne.fiff.Raw(fname_raw, preload=True)
forward = mne.read_forward_solution(fname_fwd)
if all_forward:
forward_surf_ori = mne.read_forward_solution(fname_fwd, surf_ori=True)
forward_fixed = mne.read_forward_solution(fname_fwd, force_fixed=True,
surf_ori=True)
forward_vol = mne.read_forward_solution(fname_fwd_vol, surf_ori=True)
else:
forward_surf_ori = None
forward_fixed = None
forward_vol = None
event_id, tmin, tmax = 1, tmin, tmax
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
if epochs:
# Set up pick list: MEG - bad channels
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False,
stim=True, eog=True, ref_meg=False,
exclude='bads',
selection=left_temporal_channels)
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, baseline=(None, 0),
preload=epochs_preload,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
if epochs_preload:
epochs.resample(200, npad=0, n_jobs=2)
evoked = epochs.average()
info = evoked.info
else:
epochs = None
evoked = None
info = raw.info
noise_cov = mne.read_cov(fname_cov)
noise_cov = mne.cov.regularize(noise_cov, info,
mag=0.05, grad=0.05, eeg=0.1, proj=True)
if data_cov:
data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15)
else:
data_cov = None
return raw, epochs, evoked, data_cov, noise_cov, label, forward,\
forward_surf_ori, forward_fixed, forward_vol
示例7: test_read_selection
def test_read_selection():
"""Test reading of selections"""
# test one channel for each selection
ch_names = [
"MEG 2211",
"MEG 0223",
"MEG 1312",
"MEG 0412",
"MEG 1043",
"MEG 2042",
"MEG 2032",
"MEG 0522",
"MEG 1031",
]
sel_names = [
"Vertex",
"Left-temporal",
"Right-temporal",
"Left-parietal",
"Right-parietal",
"Left-occipital",
"Right-occipital",
"Left-frontal",
"Right-frontal",
]
raw = read_raw_fif(raw_fname)
for i, name in enumerate(sel_names):
sel = read_selection(name)
assert_true(ch_names[i] in sel)
sel_info = read_selection(name, info=raw.info)
assert_equal(sel, sel_info)
# test some combinations
all_ch = read_selection(["L", "R"])
left = read_selection("L")
right = read_selection("R")
assert_true(len(all_ch) == len(left) + len(right))
assert_true(len(set(left).intersection(set(right))) == 0)
frontal = read_selection("frontal")
occipital = read_selection("Right-occipital")
assert_true(len(set(frontal).intersection(set(occipital))) == 0)
ch_names_new = [ch.replace(" ", "") for ch in ch_names]
raw_new = read_raw_fif(raw_new_fname)
for i, name in enumerate(sel_names):
sel = read_selection(name, info=raw_new.info)
assert_true(ch_names_new[i] in sel)
assert_raises(TypeError, read_selection, name, info="foo")
示例8: test_lcmv
def test_lcmv():
"""Test LCMV with evoked data and single trials
"""
event_id, tmin, tmax = 1, -0.1, 0.15
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
# Set up pick list: EEG + MEG - bad channels (modify to your needs)
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False,
stim=True, eog=True, exclude='bads',
selection=left_temporal_channels)
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
epochs.resample(200, npad=0, n_jobs=2)
evoked = epochs.average()
noise_cov = mne.read_cov(fname_cov)
noise_cov = mne.cov.regularize(noise_cov, evoked.info,
mag=0.05, grad=0.05, eeg=0.1, proj=True)
data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15)
stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.01)
stc_pow = np.sum(stc.data, axis=1)
idx = np.argmax(stc_pow)
max_stc = stc.data[idx]
tmax = stc.times[np.argmax(max_stc)]
assert_true(0.09 < tmax < 0.1)
assert_true(2. < np.max(max_stc) < 3.)
# Now test single trial using fixed orientation forward solution
# so we can compare it to the evoked solution
forward_fixed = mne.read_forward_solution(fname_fwd, force_fixed=True,
surf_ori=True)
stcs = lcmv_epochs(epochs, forward_fixed, noise_cov, data_cov, reg=0.01)
epochs.drop_bad_epochs()
assert_true(len(epochs.events) == len(stcs))
# average the single trial estimates
stc_avg = np.zeros_like(stc.data)
for this_stc in stcs:
stc_avg += this_stc.data
stc_avg /= len(stcs)
# compare it to the solution using evoked with fixed orientation
stc_fixed = lcmv(evoked, forward_fixed, noise_cov, data_cov, reg=0.01)
assert_array_almost_equal(stc_avg, stc_fixed.data)
示例9: _get_data
def _get_data(tmin=-0.11, tmax=0.15, read_all_forward=True, compute_csds=True):
"""Read in data used in tests."""
label = mne.read_label(fname_label)
events = mne.read_events(fname_event)[:10]
raw = mne.io.read_raw_fif(fname_raw, preload=False)
raw.add_proj([], remove_existing=True) # we'll subselect so remove proj
forward = mne.read_forward_solution(fname_fwd)
if read_all_forward:
forward_surf_ori = _read_forward_solution_meg(
fname_fwd, surf_ori=True)
forward_fixed = _read_forward_solution_meg(
fname_fwd, force_fixed=True, use_cps=False)
forward_vol = mne.read_forward_solution(fname_fwd_vol)
forward_vol = mne.convert_forward_solution(forward_vol, surf_ori=True)
else:
forward_surf_ori = None
forward_fixed = None
forward_vol = None
event_id, tmin, tmax = 1, tmin, tmax
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
# Set up pick list: MEG - bad channels
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.pick_types(raw.info, meg=True, eeg=False,
stim=True, eog=True, exclude='bads',
selection=left_temporal_channels)
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
epochs.resample(200, npad=0, n_jobs=2)
evoked = epochs.average().crop(0, None)
# Computing the data and noise cross-spectral density matrices
if compute_csds:
data_csd = csd_epochs(epochs, mode='multitaper', tmin=0.045,
tmax=None, fmin=8, fmax=12,
mt_bandwidth=72.72)
noise_csd = csd_epochs(epochs, mode='multitaper', tmin=None,
tmax=0.0, fmin=8, fmax=12,
mt_bandwidth=72.72)
else:
data_csd, noise_csd = None, None
return raw, epochs, evoked, data_csd, noise_csd, label, forward,\
forward_surf_ori, forward_fixed, forward_vol
示例10: test_lcmv_raw
def test_lcmv_raw():
"""Test LCMV with raw data
"""
forward = mne.read_forward_solution(fname_fwd)
label = mne.read_label(fname_label)
noise_cov = mne.read_cov(fname_cov)
raw = mne.fiff.Raw(fname_raw, preload=False)
tmin, tmax = 0, 20
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
# Set up pick list: EEG + MEG - bad channels (modify to your needs)
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, stim=True,
eog=True, exclude='bads',
selection=left_temporal_channels)
noise_cov = mne.read_cov(fname_cov)
noise_cov = mne.cov.regularize(noise_cov, raw.info,
mag=0.05, grad=0.05, eeg=0.1, proj=True)
start, stop = raw.time_as_index([tmin, tmax])
# use only the left-temporal MEG channels for LCMV
picks = mne.fiff.pick_types(raw.info, meg=True, exclude='bads',
selection=left_temporal_channels)
data_cov = mne.compute_raw_data_covariance(raw, tmin=tmin, tmax=tmax)
stc = lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01, label=label,
start=start, stop=stop, picks=picks)
assert_array_almost_equal(np.array([tmin, tmax]),
np.array([stc.times[0], stc.times[-1]]),
decimal=2)
# make sure we get an stc with vertices only in the lh
vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
assert_true(len(stc.vertno[0]) == len(np.intersect1d(vertno[0],
label.vertices)))
assert_true(len(stc.vertno[1]) == 0)
示例11: _get_data
def _get_data(tmin=-0.11, tmax=0.15, read_all_forward=True, compute_csds=True):
"""Read in real MEG data. Used to test deprecated dics_* functions."""
"""Read in data used in tests."""
if read_all_forward:
fwd_free, fwd_surf, fwd_fixed, fwd_vol, _ = _load_forward()
label_fname = op.join(data_path, 'MEG', 'sample', 'labels', 'Aud-lh.label')
label = mne.read_label(label_fname)
events = mne.read_events(fname_event)[:10]
raw = mne.io.read_raw_fif(fname_raw, preload=False)
raw.add_proj([], remove_existing=True) # we'll subselect so remove proj
event_id, tmin, tmax = 1, tmin, tmax
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
# Set up pick list: MEG - bad channels
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.pick_types(raw.info, meg=True, eeg=False,
stim=True, eog=True, exclude='bads',
selection=left_temporal_channels)
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
epochs.resample(200, npad=0, n_jobs=2)
evoked = epochs.average().crop(0, None)
# Computing the data and noise cross-spectral density matrices
if compute_csds:
data_csd = csd_multitaper(epochs, tmin=0.045, tmax=None, fmin=8,
fmax=12, bandwidth=72.72).sum()
noise_csd = csd_multitaper(epochs, tmin=None, tmax=0, fmin=8, fmax=12,
bandwidth=72.72).sum()
else:
data_csd, noise_csd = None, None
return (raw, epochs, evoked, data_csd, noise_csd, label, fwd_free,
fwd_surf, fwd_fixed, fwd_vol)
示例12: read_data
def read_data():
"""Read in data used in tests
"""
label = mne.read_label(fname_label)
events = mne.read_events(fname_event)[:10]
raw = mne.fiff.Raw(fname_raw, preload=False)
forward = mne.read_forward_solution(fname_fwd)
forward_surf_ori = mne.read_forward_solution(fname_fwd, surf_ori=True)
forward_fixed = mne.read_forward_solution(fname_fwd, force_fixed=True,
surf_ori=True)
forward_vol = mne.read_forward_solution(fname_fwd_vol, surf_ori=True)
event_id, tmin, tmax = 1, -0.11, 0.15
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
# Set up pick list: MEG - bad channels
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False,
stim=True, eog=True, exclude='bads',
selection=left_temporal_channels)
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, baseline=(None, 0), preload=True,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
epochs.resample(200, npad=0, n_jobs=2)
evoked = epochs.average()
# Computing the data and noise cross-spectral density matrices
data_csd = compute_epochs_csd(epochs, mode='multitaper', tmin=0.04,
tmax=None, fmin=8, fmax=12)
noise_csd = compute_epochs_csd(epochs, mode='multitaper', tmin=None,
tmax=0.0, fmin=8, fmax=12)
return raw, epochs, evoked, data_csd, noise_csd, label, forward,\
forward_surf_ori, forward_fixed, forward_vol
示例13: global_RMS
def global_RMS(sub, session, baseline=500, selection="Vertex"):
""" make global RMS
baseline is in indexes
"""
f_load = "sub_%d_%s_tsss_mc_epochs.fif" % (sub, session)
epochs = mne.read_epochs(f_load)
if selection is not None:
selection = mne.viz._clean_names(mne.read_selection(selection))
data_picks = mne.epochs.pick_types(epochs.info, meg='grad',
exclude='bads', selection=None)
else:
data_picks = mne.epochs.pick_types(epochs.info, meg='grad',
exclude='bads')
data = epochs.get_data()[:, data_picks, :]
data = np.sqrt(np.square(data.mean(axis=0)))
data = data.mean(axis=0)
baseline_std = data[:baseline].std().mean()
grms = data/baseline_std
return grms
示例14: test_read_selection
def test_read_selection():
"""Test reading of selections"""
# test one channel for each selection
ch_names = [
"MEG 2211",
"MEG 0223",
"MEG 1312",
"MEG 0412",
"MEG 1043",
"MEG 2042",
"MEG 2032",
"MEG 0522",
"MEG 1031",
]
sel_names = [
"Vertex",
"Left-temporal",
"Right-temporal",
"Left-parietal",
"Right-parietal",
"Left-occipital",
"Right-occipital",
"Left-frontal",
"Right-frontal",
]
for i, name in enumerate(sel_names):
sel = read_selection(name)
assert ch_names[i] in sel
# test some combinations
all_ch = read_selection(["L", "R"])
left = read_selection("L")
right = read_selection("R")
assert len(all_ch) == len(left) + len(right)
assert len(set(left).intersection(set(right))) == 0
frontal = read_selection("frontal")
occipital = read_selection("Right-occipital")
assert len(set(frontal).intersection(set(occipital))) == 0
示例15: _get_data
def _get_data(tmin=-0.1, tmax=0.15, all_forward=True, epochs=True,
epochs_preload=True, data_cov=True):
"""Read in data used in tests."""
label = mne.read_label(fname_label)
events = mne.read_events(fname_event)
raw = mne.io.read_raw_fif(fname_raw, preload=True)
forward = mne.read_forward_solution(fname_fwd)
if all_forward:
forward_surf_ori = _read_forward_solution_meg(
fname_fwd, surf_ori=True)
forward_fixed = _read_forward_solution_meg(
fname_fwd, force_fixed=True, surf_ori=True, use_cps=False)
forward_vol = _read_forward_solution_meg(fname_fwd_vol)
else:
forward_surf_ori = None
forward_fixed = None
forward_vol = None
event_id, tmin, tmax = 1, tmin, tmax
# Setup for reading the raw data
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bad channels
# Set up pick list: MEG - bad channels
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.pick_types(raw.info, selection=left_temporal_channels)
picks = picks[::2] # decimate for speed
# add a couple channels we will consider bad
bad_picks = [100, 101]
bads = [raw.ch_names[pick] for pick in bad_picks]
assert not any(pick in picks for pick in bad_picks)
picks = np.concatenate([picks, bad_picks])
raw.pick_channels([raw.ch_names[ii] for ii in picks])
del picks
raw.info['bads'] = bads # add more bads
raw.info.normalize_proj() # avoid projection warnings
if epochs:
# Read epochs
epochs = mne.Epochs(
raw, events, event_id, tmin, tmax, proj=True,
baseline=(None, 0), preload=epochs_preload, reject=reject)
if epochs_preload:
epochs.resample(200, npad=0, n_jobs=2)
epochs.crop(0, None)
evoked = epochs.average()
info = evoked.info
else:
epochs = None
evoked = None
info = raw.info
noise_cov = mne.read_cov(fname_cov)
noise_cov['projs'] = [] # avoid warning
noise_cov = mne.cov.regularize(noise_cov, info, mag=0.05, grad=0.05,
eeg=0.1, proj=True, rank=None)
if data_cov:
data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.145)
else:
data_cov = None
return raw, epochs, evoked, data_cov, noise_cov, label, forward,\
forward_surf_ori, forward_fixed, forward_vol