当前位置: 首页>>代码示例>>Python>>正文


Python Adaline.predict方法代码示例

本文整理汇总了Python中mlxtend.classifier.Adaline.predict方法的典型用法代码示例。如果您正苦于以下问题:Python Adaline.predict方法的具体用法?Python Adaline.predict怎么用?Python Adaline.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mlxtend.classifier.Adaline的用法示例。


在下文中一共展示了Adaline.predict方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_normal_equation

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_normal_equation():
    t1 = np.array([[-0.08], [1.02]])
    b1 = np.array([0.00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=None,
                  random_seed=None)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, decimal=2)
    np.testing.assert_almost_equal(ada.b_, b1, decimal=2)
    assert (y1 == ada.predict(X_std)).all(), ada.predict(X_std)
开发者ID:rasbt,项目名称:mlxtend,代码行数:13,代码来源:test_adaline.py

示例2: test_refit_weights

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_refit_weights():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=15, eta=0.01, solver='gd', random_seed=1)
    ada.fit(X_std, y1, init_weights=True)
    ada.fit(X_std, y1, init_weights=False)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:beingzy,项目名称:mlxtend,代码行数:9,代码来源:test_adaline.py

示例3: test_0_1_class

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_0_1_class():

    t1 = np.array([0.51, -0.04,  0.51])
    ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1)
    ada.fit(X_std, y0)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y0 == ada.predict(X_std)).all())
开发者ID:Afey,项目名称:mlxtend,代码行数:9,代码来源:test_adaline.py

示例4: test_stochastic_gradient_descent

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_stochastic_gradient_descent():

    t1 = np.array([0.03, -0.09, 1.02])
    ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:Afey,项目名称:mlxtend,代码行数:9,代码来源:test_adaline.py

示例5: test_gradient_descent

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_gradient_descent():

    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30, eta=0.01, learning='gd', random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:Afey,项目名称:mlxtend,代码行数:9,代码来源:test_adaline.py

示例6: test_normal_equation

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_normal_equation():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=None,
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:datasci-co,项目名称:mlxtend,代码行数:11,代码来源:test_adaline.py

示例7: test_stochastic_gradient_descent

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_stochastic_gradient_descent():
    t1 = np.array([[-0.08], [1.02]])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=len(y),
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:rasbt,项目名称:mlxtend,代码行数:11,代码来源:test_adaline.py

示例8: test_standardized_iris_data_with_zero_weights

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_standardized_iris_data_with_zero_weights():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1,
                  zero_init_weight=True)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:datasci-co,项目名称:mlxtend,代码行数:12,代码来源:test_adaline.py

示例9: test_refit_weights

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_refit_weights():
    t1 = np.array([[-0.08], [1.02]])
    ada = Adaline(epochs=15,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1)
    ada.fit(X_std, y1, init_params=True)
    ada.fit(X_std, y1, init_params=False)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:rasbt,项目名称:mlxtend,代码行数:12,代码来源:test_adaline.py

示例10: test_standardized_iris_data_with_shuffle

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_standardized_iris_data_with_shuffle():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  solver='gd',
                  random_seed=1,
                  shuffle=True)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:beingzy,项目名称:mlxtend,代码行数:12,代码来源:test_adaline.py

示例11: test_gradient_descent

# 需要导入模块: from mlxtend.classifier import Adaline [as 别名]
# 或者: from mlxtend.classifier.Adaline import predict [as 别名]
def test_gradient_descent():
    t1 = np.array([[-0.08], [1.02]])
    b1 = np.array([0.00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, decimal=2)
    np.testing.assert_almost_equal(ada.b_, b1, decimal=2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:rasbt,项目名称:mlxtend,代码行数:13,代码来源:test_adaline.py


注:本文中的mlxtend.classifier.Adaline.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。