本文整理汇总了Python中mindboggle.mio.vtks.read_vtk函数的典型用法代码示例。如果您正苦于以下问题:Python read_vtk函数的具体用法?Python read_vtk怎么用?Python read_vtk使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了read_vtk函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
zernike_fn = zernike
parser = argparse.ArgumentParser()
parser.add_argument('--debug', nargs='?', default=None, const='debug', choices=['debug', 'info', 'warning', 'error', 'critical'])
parser.add_argument('vtk_file', nargs='?', default=None)
parser.add_argument('-o', '--order', type=int, default=3)
parser.add_argument('-p', '--profile', nargs='?', default=None, const='stdout')
parser.add_argument('-t', '--timecall', default=False, action='store_true')
parser.add_argument('-v', '--validate', default=False, action='store_true')
ns = parser.parse_args()
if ns.debug is not None:
logging.basicConfig(level=getattr(logging, ns.debug.upper()))
# if ns.profile is not None:
# filename = ns.profile
# if ns.profile == 'stdout':
# filename = None
# zernike_fn = profilehooks.profile(zernike_fn, immediate=False, filename=filename)
# if ns.timecall:
# zernike_fn = profilehooks.timecall(zernike_fn)
if ns.vtk_file is not None:
points, indices, lines, faces, depths, scalar_names, npoints, \
input_vtk = read_vtk(ns.vtk_file)
print('{0} {1}'.format(len(faces), len(points)))
X = zernike_fn(points, faces, order=ns.order, scale_input=True)
if ns.validate:
Y = zernike_fn(points, faces, order=ns.order, scale_input=True, pl_cls=MultiprocPipeline)
assert np.allclose(X, Y)
else:
example1()
示例2: propagate_fundus_lines
def propagate_fundus_lines(surf_file, fundus_lines_file, thickness_file):
"""Propagate fundus lines to tile the surface.
Parameters
----------
surf_file: file containing the surface geometry in vtk format
fundus_lines_file: file containing scalars representing fundus lines
thickness_file: file containing cortical thickness scalar data
(for masking out the medial wall only)
Returns
-------
scalars indicating whether each vertex is part of the closed
fundus lines or not
"""
from mindboggle.mio.vtks import read_vtk, read_scalars
points, indices, lines, faces, fundus_lines, scalar_names, num_points, \
input_vtk = read_vtk(surf_file, return_first=True, return_array=True)
fundus_lines, _ = read_scalars(fundus_lines_file)
fundus_line_indices = [i for i, x in enumerate(fundus_lines) if x > 0.5]
thickness, _ = read_scalars(thickness_file,
return_first=True, return_array=True)
return propagate_fundus_lines(
points, faces, fundus_line_indices, thickness)
示例3: spectrum_from_file
def spectrum_from_file(vtk_file, spectrum_size=10, exclude_labels=[-1],
normalization=None, area_file='', verbose=False):
"""
Compute Laplace-Beltrami spectrum of a 3D shape in a VTK file.
Parameters
----------
vtk_file : string
the input vtk file
spectrum_size : integer
number of eigenvalues to be computed (the length of the spectrum)
exclude_labels : list of integers
labels to be excluded
normalization : string
the method used to normalize eigenvalues ('area' or None)
if "area", use area of the 2D structure as in Reuter et al. 2006
area_file : string
name of VTK file with surface area scalar values
verbose : bool
print statements?
Returns
-------
spectrum : list of floats
first spectrum_size of Laplace-Beltrami spectrum
Examples
--------
>>> # Spectrum for entire left hemisphere of Twins-2-1:
>>> import numpy as np
>>> from mindboggle.shapes.laplace_beltrami import spectrum_from_file
>>> from mindboggle.shapes.laplace_beltrami import spectrum_per_label
>>> from mindboggle.mio.fetch_data import prep_tests
>>> urls, fetch_data = prep_tests()
>>> vtk_file = fetch_data(urls['left_freesurfer_labels'], '', '.vtk')
>>> spectrum = spectrum_from_file(vtk_file, spectrum_size=6)
>>> print(np.array_str(np.array(spectrum[1::]),
... precision=5, suppress_small=True))
[ 0.00013 0.00027 0.00032 0.00047 0.00058]
"""
from mindboggle.mio.vtks import read_vtk, read_scalars
from mindboggle.shapes.laplace_beltrami import spectrum_of_largest
points, indices, lines, faces, scalars, scalar_names, npoints, \
input_vtk = read_vtk(vtk_file)
# Area file:
if area_file:
areas, u1 = read_scalars(area_file)
else:
areas = None
spectrum = spectrum_of_largest(points, faces, spectrum_size,
exclude_labels, normalization, areas,
verbose)
return spectrum
示例4: decimate_file
def decimate_file(input_vtk, reduction=0.5, smooth_steps=100,
save_vtk=True, output_vtk=''):
"""
Decimate vtk triangular mesh file with vtk.vtkDecimatePro.
Parameters
----------
input_vtk : string
input vtk file with triangular surface mesh
reduction : float
fraction of mesh faces to remove
do_smooth : Boolean
smooth after decimation?
save_vtk : Boolean
output decimated vtk file?
output_vtk : string
output decimated vtk file name
Returns
-------
output_vtk : string
output decimated vtk file
Examples
--------
>>> import os
>>> from mindboggle.guts.mesh import decimate_file
>>> from mindboggle.mio.plots import plot_surfaces
>>> path = os.environ['MINDBOGGLE_DATA']
>>> input_vtk = os.path.join(path, 'arno', 'labels', 'label22.vtk')
>>> #input_vtk='/drop/MB/data/arno/labels/lh.labels.DKT31.manual.vtk'
>>> save_vtk = True
>>> output_vtk = ''
>>> reduction = 0.5
>>> smooth_steps = 0
>>> decimate_file(input_vtk, reduction, smooth_steps, save_vtk, output_vtk)
>>> # View:
>>> plot_surfaces('decimated.vtk') # doctest: +SKIP
"""
from mindboggle.mio.vtks import read_vtk
from mindboggle.guts.mesh import decimate
if not save_vtk:
raise NotImplementedError()
# Read VTK surface mesh file:
points, indices, lines, faces, scalars, scalar_names, npoints, \
input_vtk = read_vtk(input_vtk)
# Decimate vtk triangular mesh with vtk.vtkDecimatePro
points, faces, scalars, output_vtk = decimate(points, faces, reduction,
smooth_steps, scalars,
save_vtk, output_vtk)
return output_vtk
示例5: downsample_vtk
def downsample_vtk(vtk_file, sample_rate):
"""Sample rate: number between 0 and 1."""
from mindboggle.mio.vtks import read_vtk, write_vtk
from mindboggle.guts.mesh import decimate_file
if (sample_rate < 0 or sample_rate > 1):
raise ValueError('0 <= sample_rate <= 1; you input %f' % sample_rate)
# Downsample
decimate_file(vtk_file, reduction=1 - sample_rate, output_vtk=vtk_file, save_vtk=True, smooth_steps=0)
# Hack to re-save in
vtk_data = read_vtk(vtk_file)
write_vtk(vtk_file, *vtk_data[:-2])
示例6: extract_folds
def extract_folds(depth_file, min_vertices=10000, min_fold_size=50,
do_fill_holes=False, min_hole_depth=0.001,
save_file=False):
"""
Use depth to extract folds from a triangular surface mesh.
Steps ::
1. Compute histogram of depth measures.
2. Define a depth threshold and find the deepest vertices.
3. Segment deep vertices as an initial set of folds.
4. Remove small folds.
5. Find and fill holes in the folds (optional).
6. Renumber folds.
Step 2 ::
To extract an initial set of deep vertices from the surface mesh,
we anticipate that there will be a rapidly decreasing distribution
of low depth values (on the outer surface) with a long tail
of higher depth values (in the folds), so we smooth the histogram's
bin values, convolve to compute slopes, and find the depth value
for the first bin with slope = 0. This is our threshold.
Step 5 ::
The folds could have holes in areas shallower than the depth threshold.
Calling fill_holes() could accidentally include very shallow areas
(in an annulus-shaped fold, for example), so we include the argument
exclude_range to check for any values from zero to min_hole_depth;
holes are not filled if they contains values within this range.
Parameters
----------
depth_file : string
surface mesh file in VTK format with faces and depth scalar values
min_fold_size : integer
minimum fold size (number of vertices)
do_fill_holes : Boolean
fill holes in the folds?
min_hole_depth : float
largest non-zero depth value that will stop a hole from being filled
save_file : Boolean
save output VTK file?
Returns
-------
folds : list of integers
fold numbers for all vertices (-1 for non-fold vertices)
n_folds : int
number of folds
depth_threshold : float
threshold defining the minimum depth for vertices to be in a fold
bins : list of integers
histogram bins: each is the number of vertices within a range of depth values
bin_edges : list of floats
histogram bin edge values defining the bin ranges of depth values
folds_file : string (if save_file)
name of output VTK file with fold IDs (-1 for non-fold vertices)
Examples
--------
>>> import os
>>> import numpy as np
>>> import pylab
>>> from scipy.ndimage.filters import gaussian_filter1d
>>> from mindboggle.mio.vtks import read_scalars
>>> from mindboggle.guts.mesh import find_neighbors_from_file
>>> from mindboggle.mio.plots import plot_surfaces
>>> from mindboggle.features.folds import extract_folds
>>> path = os.environ['MINDBOGGLE_DATA']
>>> depth_file = 'travel_depth.vtk' #os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
>>> neighbor_lists = find_neighbors_from_file(depth_file)
>>> min_vertices = 10000
>>> min_fold_size = 50
>>> do_fill_holes = False #True
>>> min_hole_depth = 0.001
>>> save_file = True
>>> #
>>> folds, n_folds, thr, bins, bin_edges, folds_file = extract_folds(depth_file,
>>> min_vertices, min_fold_size, do_fill_holes, min_hole_depth, save_file)
>>> #
>>> # View folds:
>>> plot_surfaces('folds.vtk')
>>> # Plot histogram and depth threshold:
>>> depths, name = read_scalars(depth_file)
>>> nbins = np.round(len(depths) / 100.0)
>>> a,b,c = pylab.hist(depths, bins=nbins)
>>> pylab.plot(thr*np.ones((100,1)), np.linspace(0, max(bins), 100), 'r.')
>>> pylab.show()
>>> # Plot smoothed histogram:
>>> bins_smooth = gaussian_filter1d(bins.tolist(), 5)
>>> pylab.plot(range(len(bins)), bins, '.', range(len(bins)), bins_smooth,'-')
>>> pylab.show()
"""
import os
import sys
import numpy as np
from time import time
from scipy.ndimage.filters import gaussian_filter1d
from mindboggle.mio.vtks import rewrite_scalars, read_vtk
from mindboggle.guts.mesh import find_neighbors
#.........这里部分代码省略.........
示例7: extract_sulci
#.........这里部分代码省略.........
>>> folds_or_file, name = read_scalars(folds_file, True, True)
>>> output_file = 'extract_sulci_fold7_2sulci.vtk'
>>> # Limit number of folds to speed up the test:
>>> limit_folds = True
>>> if limit_folds:
... fold_numbers = [7] #[4, 6]
... i0 = [i for i,x in enumerate(folds_or_file) if x not in fold_numbers]
... folds_or_file[i0] = background_value
>>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file,
... hemi, min_boundary, sulcus_names, save_file, output_file,
... background_value, verbose)
>>> n_sulci # 23 # (if not limit_folds)
2
>>> lens = [len([x for x in sulci if x==y])
... for y in np.unique(sulci) if y != -1]
>>> lens[0:10] # [6358, 3288, 7612, 5205, 4414, 6251, 3493, 2566, 4436, 739] # (if not limit_folds)
[369, 93]
View result without background (skip test):
>>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP
>>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP
>>> output = 'extract_sulci_fold7_2sulci_no_background.vtk'
>>> rewrite_scalars(sulci_file, output, sulci,
... 'sulci', sulci) # doctest: +SKIP
>>> plot_surfaces(output) # doctest: +SKIP
"""
import os
from time import time
import numpy as np
from mindboggle.mio.vtks import read_scalars, read_vtk, rewrite_scalars
from mindboggle.guts.mesh import find_neighbors
from mindboggle.guts.segment import extract_borders, propagate, segment_regions
from mindboggle.mio.labels import DKTprotocol
# Load fold numbers if folds_or_file is a string:
if isinstance(folds_or_file, str):
folds, name = read_scalars(folds_or_file)
elif isinstance(folds_or_file, list):
folds = folds_or_file
elif isinstance(folds_or_file, np.ndarray):
folds = folds_or_file.tolist()
dkt = DKTprotocol()
if hemi == "lh":
pair_lists = dkt.left_sulcus_label_pair_lists
elif hemi == "rh":
pair_lists = dkt.right_sulcus_label_pair_lists
else:
raise IOError("Warning: hemisphere not properly specified ('lh' or 'rh').")
# Load points, faces, and neighbors:
points, indices, lines, faces, labels, scalar_names, npoints, input_vtk = read_vtk(labels_file)
neighbor_lists = find_neighbors(faces, npoints)
# Array of sulcus IDs for fold vertices, initialized as -1.
# Since we do not touch gyral vertices and vertices whose labels
# are not in the label list, or vertices having only one label,
# their sulcus IDs will remain -1:
sulci = background_value * np.ones(npoints)
# ------------------------------------------------------------------------
示例8: spectrum_per_label
def spectrum_per_label(vtk_file, spectrum_size=10, exclude_labels=[-1],
normalization='area', area_file='',
largest_segment=True):
"""
Compute Laplace-Beltrami spectrum per labeled region in a file.
Parameters
----------
vtk_file : string
name of VTK surface mesh file containing index scalars (labels)
spectrum_size : integer
number of eigenvalues to be computed (the length of the spectrum)
exclude_labels : list of integers
labels to be excluded
normalization : string
the method used to normalize eigenvalues ('area' or None)
if "area", use area of the 2D structure as in Reuter et al. 2006
area_file : string (optional)
name of VTK file with surface area scalar values
largest_segment : Boolean
compute spectrum only for largest segment with a given label?
Returns
-------
spectrum_lists : list of lists
first eigenvalues for each label's Laplace-Beltrami spectrum
label_list : list of integers
list of unique labels for which spectra are obtained
Examples
--------
>>> # Uncomment "if label==22:" below to run example:
>>> # Spectrum for Twins-2-1 left postcentral (22) pial surface:
>>> import os
>>> from mindboggle.shapes.laplace_beltrami import spectrum_per_label
>>> path = os.environ['MINDBOGGLE_DATA']
>>> vtk_file = os.path.join(path, 'arno', 'labels', 'lh.labels.DKT31.manual.vtk')
>>> area_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.area.vtk')
>>> spectrum_size = 6
>>> exclude_labels = [0] #[-1]
>>> largest_segment = True
>>> spectrum_per_label(vtk_file, spectrum_size, exclude_labels, None,
>>> area_file, largest_segment)
([[6.3469513010430304e-18,
0.0005178862383467463,
0.0017434911095630772,
0.003667561767487686,
0.005429017880363784,
0.006309346984678924]],
[22])
"""
from mindboggle.mio.vtks import read_vtk, read_scalars
from mindboggle.guts.mesh import remove_faces, reindex_faces_points
from mindboggle.shapes.laplace_beltrami import fem_laplacian,\
spectrum_of_largest
# Read VTK surface mesh file:
faces, u1, u2, points, u4, labels, u5, u6 = read_vtk(vtk_file)
# Area file:
if area_file:
areas, u1 = read_scalars(area_file)
else:
areas = None
# Loop through labeled regions:
ulabels = []
[ulabels.append(int(x)) for x in labels if x not in ulabels
if x not in exclude_labels]
label_list = []
spectrum_lists = []
for label in ulabels:
#if label == 22:
# print("DEBUG: COMPUTE FOR ONLY ONE LABEL")
# Determine the indices per label:
Ilabel = [i for i,x in enumerate(labels) if x == label]
print('{0} vertices for label {1}'.format(len(Ilabel), label))
# Remove background faces:
pick_faces = remove_faces(faces, Ilabel)
pick_faces, pick_points, o1 = reindex_faces_points(pick_faces, points)
# Compute Laplace-Beltrami spectrum for the label:
if largest_segment:
exclude_labels_inner = [-1]
spectrum = spectrum_of_largest(pick_points, pick_faces,
spectrum_size,
exclude_labels_inner,
normalization, areas)
else:
spectrum = fem_laplacian(pick_points, pick_faces,
spectrum_size, normalization)
# Append to a list of lists of spectra:
spectrum_lists.append(spectrum)
label_list.append(label)
return spectrum_lists, label_list
示例9: zernike_moments_per_label
def zernike_moments_per_label(vtk_file, order=10, exclude_labels=[-1],
scale_input=True,
decimate_fraction=0, decimate_smooth=25):
"""
Compute the Zernike moments per labeled region in a file.
Optionally decimate the input mesh.
Parameters
----------
vtk_file : string
name of VTK surface mesh file containing index scalars (labels)
order : integer
number of moments to compute
exclude_labels : list of integers
labels to be excluded
scale_input : Boolean
translate and scale each object so it is bounded by a unit sphere?
(this is the expected input to zernike_moments())
decimate_fraction : float
fraction of mesh faces to remove for decimation (1 for no decimation)
decimate_smooth : integer
number of smoothing steps for decimation
Returns
-------
descriptors_lists : list of lists of floats
Zernike descriptors per label
label_list : list of integers
list of unique labels for which moments are computed
Examples
--------
>>> # Uncomment "if label==22:" below to run example:
>>> # Twins-2-1 left postcentral (22) pial surface:
>>> import os
>>> from mindboggle.shapes.zernike.zernike import zernike_moments_per_label
>>> path = os.path.join(os.environ['HOME'], 'mindboggled', 'OASIS-TRT-20-1')
>>> vtk_file = os.path.join(path, 'labels', 'left_surface', 'relabeled_classifier.vtk')
>>> order = 3
>>> exclude_labels = [-1, 0]
>>> scale_input = True
>>> zernike_moments_per_label(vtk_file, order, exclude_labels, scale_input)
([[0.00528486237819844,
0.009571754617699853,
0.0033489494903015944,
0.00875603468268444,
0.0015879536633349918,
0.0008080165707033097]],
[22])
([[0.0018758013185778298,
0.001757973693050823,
0.002352403177686726,
0.0032281044369938286,
0.002215900343702539,
0.0019646380916703856]],
[14.0])
Arthur Mikhno's result:
1.0e+07 *
0.0000
0.0179
0.0008
4.2547
0.0534
4.4043
"""
import numpy as np
from mindboggle.mio.vtks import read_vtk
from mindboggle.guts.mesh import remove_faces
from mindboggle.shapes.zernike.zernike import zernike_moments
min_points_faces = 4
#-------------------------------------------------------------------------
# Read VTK surface mesh file:
#-------------------------------------------------------------------------
faces, u1,u2, points, u3, labels, u4,u5 = read_vtk(vtk_file)
#-------------------------------------------------------------------------
# Loop through labeled regions:
#-------------------------------------------------------------------------
ulabels = [x for x in np.unique(labels) if x not in exclude_labels]
label_list = []
descriptors_lists = []
for label in ulabels:
#if label == 1022: # 22:
# print("DEBUG: COMPUTE FOR ONLY ONE LABEL")
#---------------------------------------------------------------------
# Determine the indices per label:
#---------------------------------------------------------------------
Ilabel = [i for i,x in enumerate(labels) if x == label]
print(' {0} vertices for label {1}'.format(len(Ilabel), label))
if len(Ilabel) > min_points_faces:
#.........这里部分代码省略.........
示例10: write_vertex_measures
def write_vertex_measures(output_table, labels_or_file, sulci=[], fundi=[],
affine_transform_files=[], inverse_booleans=[],
transform_format='itk',
area_file='', mean_curvature_file='', travel_depth_file='',
geodesic_depth_file='', freesurfer_thickness_file='',
freesurfer_curvature_file='', freesurfer_sulc_file=''):
"""
Make a table of shape values per vertex.
Note ::
This function is tailored for Mindboggle outputs.
Parameters
----------
output_table : string
output file (full path)
labels_or_file : list or string
label number for each vertex or name of VTK file with index scalars
sulci : list of integers
indices to sulci, one per vertex, with -1 indicating no sulcus
fundi : list of integers
indices to fundi, one per vertex, with -1 indicating no fundus
affine_transform_files : list of strings
affine transform files to standard space
inverse_booleans : list of of zeros and ones
for each transform, 1 to take the inverse, else 0
transform_format : string
format for transform file
Ex: 'txt' for text, 'itk' for ITK, and 'mat' for Matlab format
area_file : string
name of VTK file with surface area scalar values
mean_curvature_file : string
name of VTK file with mean curvature scalar values
travel_depth_file : string
name of VTK file with travel depth scalar values
geodesic_depth_file : string
name of VTK file with geodesic depth scalar values
freesurfer_thickness_file : string
name of VTK file with FreeSurfer thickness scalar values
freesurfer_curvature_file : string
name of VTK file with FreeSurfer curvature (curv) scalar values
freesurfer_sulc_file : string
name of VTK file with FreeSurfer convexity (sulc) scalar values
Returns
-------
output_table : table file name for vertex shape values
Examples
--------
>>> import os
>>> from mindboggle.mio.vtks import read_scalars
>>> from mindboggle.mio.tables import write_vertex_measures
>>> #
>>> output_table = ''#vertex_shapes.csv'
>>> path = os.environ['MINDBOGGLE_DATA']
>>> labels_or_file = os.path.join(path, 'arno', 'labels', 'lh.labels.DKT25.manual.vtk')
>>> sulci_file = os.path.join(path, 'arno', 'features', 'sulci.vtk')
>>> fundi_file = os.path.join(path, 'arno', 'features', 'fundi.vtk')
>>> sulci, name = read_scalars(sulci_file)
>>> fundi, name = read_scalars(fundi_file)
>>> affine_transform_files = [os.path.join(path, 'arno', 'mri',
>>> 't1weighted_brain.MNI152Affine.txt')]
>>> inverse_booleans = [1]
>>> transform_format = 'itk'
>>> swap_xy = True
>>> area_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.area.vtk')
>>> mean_curvature_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.mean_curvature.vtk')
>>> travel_depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk')
>>> geodesic_depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.geodesic_depth.vtk')
>>> freesurfer_thickness_file = ''
>>> freesurfer_curvature_file = ''
>>> freesurfer_sulc_file = ''
>>> #
>>> write_vertex_measures(output_table, labels_or_file, sulci, fundi,
>>> affine_transform_files, inverse_booleans, transform_format, area_file,
>>> mean_curvature_file, travel_depth_file, geodesic_depth_file,
>>> freesurfer_thickness_file, freesurfer_curvature_file, freesurfer_sulc_file)
"""
import os
import numpy as np
import pandas as pd
from mindboggle.mio.vtks import read_scalars, read_vtk, \
apply_affine_transforms
# Make sure inputs are lists:
if isinstance(labels_or_file, np.ndarray):
labels = [int(x) for x in labels_or_file]
elif isinstance(labels_or_file, list):
labels = labels_or_file
elif isinstance(labels_or_file, str):
labels, name = read_scalars(labels_or_file)
if isinstance(sulci, np.ndarray):
sulci = [int(x) for x in sulci]
if isinstance(fundi, np.ndarray):
fundi = [int(x) for x in fundi]
if not labels and not sulci and not fundi:
#.........这里部分代码省略.........
示例11: evaluate_deep_features
def evaluate_deep_features(features_file, labels_file, sulci_file='', hemi='',
excludeIDs=[-1], output_vtk_name='', verbose=True):
"""
Evaluate deep surface features by computing the minimum distance from each
label border vertex to all of the feature vertices in the same sulcus,
and from each feature vertex to all of the label border vertices in the
same sulcus. The label borders run along the deepest parts of sulci
and correspond to fundi in the DKT cortical labeling protocol.
Parameters
----------
features_file : string
VTK surface file with feature numbers for vertex scalars
labels_file : string
VTK surface file with label numbers for vertex scalars
sulci_file : string
VTK surface file with sulcus numbers for vertex scalars
excludeIDs : list of integers
feature/sulcus/label IDs to exclude (background set to -1)
output_vtk_name : Boolean
if not empty, output a VTK file beginning with output_vtk_name that
contains a surface with mean distances as scalars
verbose : Boolean
print mean distances to standard output?
Returns
-------
feature_to_border_mean_distances : numpy array [number of features x 1]
mean distance from each feature to sulcus label border
feature_to_border_sd_distances : numpy array [number of features x 1]
standard deviations of feature-to-border distances
feature_to_border_distances_vtk : string
VTK surface file containing feature-to-border distances
border_to_feature_mean_distances : numpy array [number of features x 1]
mean distances from each sulcus label border to feature
border_to_feature_sd_distances : numpy array [number of features x 1]
standard deviations of border-to-feature distances
border_to_feature_distances_vtk : string
VTK surface file containing border-to-feature distances
"""
import os
import sys
import numpy as np
from mindboggle.mio.vtks import read_vtk, read_scalars, write_vtk
from mindboggle.guts.mesh import find_neighbors, remove_faces
from mindboggle.guts.segment import extract_borders
from mindboggle.guts.compute import source_to_target_distances
from mindboggle.mio.labels import DKTprotocol
dkt = DKTprotocol()
#-------------------------------------------------------------------------
# Load labels, features, and sulci:
#-------------------------------------------------------------------------
faces, lines, indices, points, npoints, labels, scalar_names, \
input_vtk = read_vtk(labels_file, True, True)
features, name = read_scalars(features_file, True, True)
if sulci_file:
sulci, name = read_scalars(sulci_file, True, True)
# List of indices to sulcus vertices:
sulcus_indices = [i for i,x in enumerate(sulci) if x != -1]
segmentIDs = sulci
sulcus_faces = remove_faces(faces, sulcus_indices)
else:
sulcus_indices = range(len(labels))
segmentIDs = []
sulcus_faces = faces
#-------------------------------------------------------------------------
# Prepare neighbors, label pairs, border IDs, and outputs:
#-------------------------------------------------------------------------
# Calculate neighbor lists for all points:
print('Find neighbors for all vertices...')
neighbor_lists = find_neighbors(faces, npoints)
# Find label border points in any of the sulci:
print('Find label border points in any of the sulci...')
border_indices, border_label_tuples, unique_border_label_tuples = \
extract_borders(sulcus_indices, labels, neighbor_lists,
ignore_values=[], return_label_pairs=True)
if not len(border_indices):
sys.exit('There are no label border points!')
# Initialize an array of label border IDs
# (label border vertices that define sulci in the labeling protocol):
print('Build an array of label border IDs...')
label_borders = -1 * np.ones(npoints)
if hemi == 'lh':
nsulcus_lists = len(dkt.left_sulcus_label_pair_lists)
else:
nsulcus_lists = len(dkt.right_sulcus_label_pair_lists)
feature_to_border_mean_distances = -1 * np.ones(nsulcus_lists)
feature_to_border_sd_distances = -1 * np.ones(nsulcus_lists)
border_to_feature_mean_distances = -1 * np.ones(nsulcus_lists)
border_to_feature_sd_distances = -1 * np.ones(nsulcus_lists)
feature_to_border_distances_vtk = ''
border_to_feature_distances_vtk = ''
#-------------------------------------------------------------------------
#.........这里部分代码省略.........
示例12: find_depth_threshold
def find_depth_threshold(depth_file, min_vertices=10000, verbose=False):
"""
Find depth threshold to extract folds from a triangular surface mesh.
Steps ::
1. Compute histogram of depth measures.
2. Define a depth threshold and find the deepest vertices.
To extract an initial set of deep vertices from the surface mesh,
we anticipate that there will be a rapidly decreasing distribution
of low depth values (on the outer surface) with a long tail
of higher depth values (in the folds), so we smooth the histogram's
bin values, convolve to compute slopes, and find the depth value
for the first bin with slope = 0. This is our threshold.
Parameters
----------
depth_file : string
surface mesh file in VTK format with faces and depth scalar values
min_vertices : integer
minimum number of vertices
verbose : bool
print statements?
Returns
-------
depth_threshold : float
threshold defining the minimum depth for vertices to be in a fold
bins : list of integers
histogram bins: each is the number of vertices within a range of depth values
bin_edges : list of floats
histogram bin edge values defining the bin ranges of depth values
Examples
--------
>>> import numpy as np
>>> from mindboggle.features.folds import find_depth_threshold
>>> from mindboggle.mio.fetch_data import prep_tests
>>> urls, fetch_data = prep_tests()
>>> depth_file = fetch_data(urls['left_travel_depth'], '', '.vtk')
>>> min_vertices = 10000
>>> verbose = False
>>> depth_threshold, bins, bin_edges = find_depth_threshold(depth_file,
... min_vertices, verbose)
>>> np.float("{0:.{1}f}".format(depth_threshold, 5))
2.36089
View threshold histogram plots (skip test):
>>> def vis():
... import numpy as np
... import pylab
... from scipy.ndimage.filters import gaussian_filter1d
... from mindboggle.mio.vtks import read_scalars
... # Plot histogram and depth threshold:
... depths, name = read_scalars(depth_file)
... nbins = np.round(len(depths) / 100.0)
... a,b,c = pylab.hist(depths, bins=nbins)
... pylab.plot(depth_threshold * np.ones((100,1)),
... np.linspace(0, max(bins), 100), 'r.')
... pylab.title('Histogram of depth values with threshold')
... pylab.xlabel('Depth')
... pylab.ylabel('Number of vertices')
... pylab.show()
... # Plot smoothed histogram:
... bins_smooth = gaussian_filter1d(bins.tolist(), 5)
... pylab.plot(list(range(len(bins))), bins, '.',
... list(range(len(bins))), bins_smooth,'-')
... pylab.title('Smoothed histogram of depth values')
... pylab.show()
>>> vis() # doctest: +SKIP
"""
import numpy as np
from scipy.ndimage.filters import gaussian_filter1d
from mindboggle.mio.vtks import read_vtk
# ------------------------------------------------------------------------
# Load depth values for all vertices:
# ------------------------------------------------------------------------
points, indices, lines, faces, depths, scalar_names, npoints, \
input_vtk = read_vtk(depth_file, return_first=True, return_array=True)
# ------------------------------------------------------------------------
# Compute histogram of depth measures:
# ------------------------------------------------------------------------
if npoints > min_vertices:
nbins = np.int(np.round(npoints / 100.0))
else:
raise IOError(" Expecting at least {0} vertices to create "
"depth histogram".format(min_vertices))
bins, bin_edges = np.histogram(depths, bins=nbins)
# ------------------------------------------------------------------------
# Anticipating that there will be a rapidly decreasing distribution
# of low depth values (on the outer surface) with a long tail of higher
# depth values (in the folds), smooth the bin values (Gaussian), convolve
# to compute slopes, and find the depth for the first bin with slope = 0.
# ------------------------------------------------------------------------
bins_smooth = gaussian_filter1d(bins.tolist(), 5)
#.........这里部分代码省略.........
示例13: extract_fundi
#.........这里部分代码省略.........
... i0 = [i for i,x in enumerate(folds) if x not in fold_numbers]
... folds[i0] = -1
>>> min_separation = 10
>>> erode_ratio = 0.10
>>> erode_min_size = 10
>>> save_file = True
>>> output_file = 'extract_fundi_fold4.vtk'
>>> background_value = -1
>>> verbose = False
>>> o1, o2, fundus_per_fold_file = extract_fundi(folds, curv_file,
... depth_file, min_separation, erode_ratio, erode_min_size,
... save_file, output_file, background_value, verbose)
>>> lens = [len([x for x in o1 if x == y])
... for y in np.unique(o1) if y != background_value]
>>> lens[0:10] # [66, 2914, 100, 363, 73, 331, 59, 30, 1, 14] # (if not limit_folds)
[73]
View result without background (skip test):
>>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP
>>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP
>>> rewrite_scalars(fundus_per_fold_file,
... 'extract_fundi_fold4_no_background.vtk', o1,
... 'fundus_per_fold', folds) # doctest: +SKIP
>>> plot_surfaces('extract_fundi_fold4_no_background.vtk') # doctest: +SKIP
"""
# Extract a skeleton to connect endpoints in a fold:
import os
import numpy as np
from time import time
from mindboggle.mio.vtks import read_scalars, read_vtk, rewrite_scalars
from mindboggle.guts.compute import median_abs_dev
from mindboggle.guts.paths import find_max_values
from mindboggle.guts.mesh import find_neighbors_from_file
from mindboggle.guts.mesh import find_complete_faces
from mindboggle.guts.paths import find_outer_endpoints
from mindboggle.guts.paths import connect_points_erosion
if isinstance(folds, list):
folds = np.array(folds)
# Load values, inner anchor threshold, and neighbors:
if os.path.isfile(curv_file):
points, indices, lines, faces, curvs, scalar_names, npoints, \
input_vtk = read_vtk(curv_file, True, True)
else:
raise IOError("{0} doesn't exist!".format(curv_file))
if os.path.isfile(curv_file):
depths, name = read_scalars(depth_file, True, True)
else:
raise IOError("{0} doesn't exist!".format(depth_file))
values = curvs * depths
values0 = [x for x in values if x > 0]
thr = np.median(values0) + 2 * median_abs_dev(values0)
neighbor_lists = find_neighbors_from_file(curv_file)
# ------------------------------------------------------------------------
# Loop through folds:
# ------------------------------------------------------------------------
t1 = time()
skeletons = []
unique_fold_IDs = [x for x in np.unique(folds) if x != background_value]
示例14: zernike_moments_per_label
def zernike_moments_per_label(vtk_file, order=10, exclude_labels=[-1],
scale_input=True, decimate_fraction=0,
decimate_smooth=25, verbose=False):
"""
Compute the Zernike moments per labeled region in a file.
Optionally decimate the input mesh.
Parameters
----------
vtk_file : string
name of VTK surface mesh file containing index scalars (labels)
order : integer
number of moments to compute
exclude_labels : list of integers
labels to be excluded
scale_input : bool
translate and scale each object so it is bounded by a unit sphere?
(this is the expected input to zernike_moments())
decimate_fraction : float
fraction of mesh faces to remove for decimation (1 for no decimation)
decimate_smooth : integer
number of smoothing steps for decimation
verbose : bool
print statements?
Returns
-------
descriptors_lists : list of lists of floats
Zernike descriptors per label
label_list : list of integers
list of unique labels for which moments are computed
Examples
--------
>>> # Zernike moments per label of a FreeSurfer-labeled left cortex.
>>> # Uncomment "if label==22:" below to run example
>>> # for left postcentral (22) pial surface:
>>> import numpy as np
>>> from mindboggle.shapes.zernike.zernike import zernike_moments_per_label
>>> from mindboggle.mio.fetch_data import prep_tests
>>> urls, fetch_data = prep_tests()
>>> vtk_file = fetch_data(urls['left_freesurfer_labels'])
>>> order = 3
>>> exclude_labels = [-1]
>>> scale_input = True
>>> verbose = False
>>> descriptors_lists, label_list = zernike_moments_per_label(vtk_file,
... order, exclude_labels, scale_input, verbose)
>>> label_list[0:10]
[999, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1009, 1010]
>>> print(np.array_str(np.array(descriptors_lists[0]),
... precision=5, suppress_small=True))
[ 0.00587 0.01143 0.0031 0.00881 0.00107 0.00041]
>>> print(np.array_str(np.array(descriptors_lists[1]),
... precision=5, suppress_small=True))
[ 0.00004 0.00009 0.00003 0.00009 0.00002 0.00001]
>>> print(np.array_str(np.array(descriptors_lists[2]),
... precision=5, suppress_small=True))
[ 0.00144 0.00232 0.00128 0.00304 0.00084 0.00051]
>>> print(np.array_str(np.array(descriptors_lists[3]),
... precision=5, suppress_small=True))
[ 0.00393 0.006 0.00371 0.00852 0.00251 0.00153]
>>> print(np.array_str(np.array(descriptors_lists[4]),
... precision=5, suppress_small=True))
[ 0.00043 0.0003 0.00095 0.00051 0.00115 0.00116]
"""
import numpy as np
from mindboggle.mio.vtks import read_vtk
from mindboggle.guts.mesh import keep_faces
from mindboggle.shapes.zernike.zernike import zernike_moments
min_points_faces = 4
#-------------------------------------------------------------------------
# Read VTK surface mesh file:
#-------------------------------------------------------------------------
points, indices, lines, faces, labels, scalar_names, npoints, \
input_vtk = read_vtk(vtk_file)
#-------------------------------------------------------------------------
# Loop through labeled regions:
#-------------------------------------------------------------------------
ulabels = [x for x in np.unique(labels) if x not in exclude_labels]
label_list = []
descriptors_lists = []
for label in ulabels:
#if label == 1022: # 22:
# print("DEBUG: COMPUTE FOR ONLY ONE LABEL")
#---------------------------------------------------------------------
# Determine the indices per label:
#---------------------------------------------------------------------
Ilabel = [i for i,x in enumerate(labels) if x == label]
if verbose:
print(' {0} vertices for label {1}'.format(len(Ilabel), label))
if len(Ilabel) > min_points_faces:
#.........这里部分代码省略.........
示例15: write_average_face_values_per_label
def write_average_face_values_per_label(input_indices_vtk,
input_values_vtk='', area_file='', output_stem='',
exclude_values=[-1], background_value=-1, verbose=False):
"""
Write out a separate VTK file for each integer
in (the first) scalar list of an input VTK file.
Optionally write the values drawn from a second VTK file.
Parameters
----------
input_indices_vtk : string
path of the input VTK file that contains indices as scalars
input_values_vtk : string
path of the input VTK file that contains values as scalars
output_stem : string
path and stem of the output VTK file
exclude_values : list or array
values to exclude
background_value : integer or float
background value in output VTK files
scalar_name : string
name of a lookup table of scalars values
verbose : bool
print statements?
Examples
--------
>>> import os
>>> from mindboggle.mio.tables import write_average_face_values_per_label
>>> from mindboggle.mio.fetch_data import prep_tests
>>> urls, fetch_data = prep_tests()
>>> input_indices_vtk = fetch_data(urls['left_freesurfer_labels'])
>>> input_values_vtk = fetch_data(urls['left_mean_curvature'])
>>> area_file = fetch_data(urls['left_area'])
>>> output_stem = 'labels_thickness'
>>> exclude_values = [-1]
>>> background_value = -1
>>> verbose = False
>>> write_average_face_values_per_label(input_indices_vtk,
... input_values_vtk, area_file, output_stem, exclude_values,
... background_value, verbose)
View vtk file (skip test):
>>> from mindboggle.mio.plots import plot_surfaces
>>> example_vtk = os.path.join(os.getcwd(), output_stem + '0.vtk')
>>> plot_surfaces(example_vtk) # doctest: +SKIP
"""
import os
import numpy as np
import pandas as pd
from mindboggle.mio.vtks import read_scalars, read_vtk, write_vtk
from mindboggle.guts.mesh import keep_faces
# Load VTK file:
points, indices, lines, faces, scalars, scalar_names, npoints, \
input_vtk = read_vtk(input_indices_vtk, True, True)
if area_file:
area_scalars, name = read_scalars(area_file, True, True)
if verbose:
print("Explode the scalar list in {0}".
format(os.path.basename(input_indices_vtk)))
if input_values_vtk != input_indices_vtk:
if verbose:
print("Explode the scalar list of values in {0} "
"with the scalar list of indices in {1}".
format(os.path.basename(input_values_vtk),
os.path.basename(input_indices_vtk)))
# Loop through unique (non-excluded) scalar values:
unique_scalars = [int(x) for x in np.unique(scalars)
if x not in exclude_values]
for scalar in unique_scalars:
keep_indices = [x for sublst in faces for x in sublst]
new_faces = keep_faces(faces, keep_indices)
# Create array and indices for scalar value:
select_scalars = np.copy(scalars)
select_scalars[scalars != scalar] = background_value
scalar_indices = [i for i,x in enumerate(select_scalars) if x==scalar]
if verbose:
print(" Scalar {0}: {1} vertices".format(scalar,
len(scalar_indices)))
#---------------------------------------------------------------------
# For each face, average vertex values:
#---------------------------------------------------------------------
output_table = os.path.join(os.getcwd(),
output_stem+str(scalar)+'.csv')
columns = []
for face in new_faces:
values = []
for index in face:
if area_file:
values.append(scalars[index] / area_scalars[index])
else:
values.append(scalars[index])
#.........这里部分代码省略.........