本文整理汇总了Python中messytables.offset_processor函数的典型用法代码示例。如果您正苦于以下问题:Python offset_processor函数的具体用法?Python offset_processor怎么用?Python offset_processor使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了offset_processor函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: convert
def convert(self):
table_set = CSVTableSet.from_fileobj(self.stream)
row_set = table_set.tables.pop()
offset, headers = headers_guess(row_set.sample)
fields = []
dup_columns = {}
noname_count = 1
for index, field in enumerate(headers):
field_dict = {}
if "" == field:
field = '_'.join(['column', str(noname_count)])
headers[index] = field
noname_count += 1
if headers.count(field) == 1:
field_dict['id'] = field
else:
dup_columns[field] = dup_columns.get(field, 0) + 1
field_dict['id'] = u'_'.join([field, str(dup_columns[field])])
fields.append(field_dict)
row_set.register_processor(headers_processor([x['id'] for x in fields]))
row_set.register_processor(offset_processor(offset + 1))
data_row = {}
result = []
for row in row_set:
for index, cell in enumerate(row):
data_row[cell.column] = cell.value
result.append(data_row)
return fields, result
示例2: generate_table
def generate_table(self, meta, sheet, row_set):
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(headers_processor(headers))
row_set.register_processor(offset_processor(offset + 1))
schema = TabularSchema({
'sheet_name': row_set.name,
'content_hash': meta.content_hash,
'sheet': sheet
})
columns = [schema.add_column(h) for h in headers]
log.info("Creating internal table: %s columns, table: %r", len(columns),
schema.table_name)
tabular = Tabular(schema)
tabular.drop()
tabular.create()
def generate_rows():
for i, row in enumerate(row_set):
record = {}
for cell, column in zip(row, columns):
record[column.name] = string_value(cell.value)
if len(record):
for column in columns:
record[column.name] = record.get(column.name, None)
yield record
log.info("Loaded %s rows.", i)
tabular.load_iter(generate_rows())
return schema
示例3: get_schema
def get_schema(self, filename):
"""
Guess schema using messytables
"""
table_set = self.read_file(filename)
# Have I been able to read the filename
if table_set is None:
return []
# Get the first table as rowset
row_set = table_set.tables[0]
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(headers_processor(headers))
row_set.register_processor(offset_processor(offset + 1))
types = type_guess(row_set.sample, strict=True)
# Get a sample as well..
sample = next(row_set.sample)
clean = lambda v: str(v) if not isinstance(v, str) else v
schema = []
for i, h in enumerate(headers):
schema.append([h,
str(types[i]),
clean(sample[i].value)])
return schema
示例4: test_strict_type_guessing_with_large_file
def test_strict_type_guessing_with_large_file(self):
fh = horror_fobj('211.csv')
rows = CSVTableSet(fh).tables[0]
offset, headers = headers_guess(rows.sample)
rows.register_processor(offset_processor(offset + 1))
types = [StringType, IntegerType, DecimalType, DateUtilType]
guessed_types = type_guess(rows.sample, types, True)
assert_equal(len(guessed_types), 96)
assert_equal(guessed_types, [
IntegerType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
IntegerType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), IntegerType(), StringType(), DecimalType(),
DecimalType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
IntegerType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
IntegerType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), DateUtilType(),
DateUtilType(), DateUtilType(), DateUtilType(), StringType(),
StringType(), StringType()])
示例5: generate_table
def generate_table(self, document, meta, sheet, row_set):
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(headers_processor(headers))
row_set.register_processor(offset_processor(offset + 1))
tabular = self.create_tabular(sheet, row_set.name)
columns = [tabular.add_column(h) for h in headers]
if not len(columns):
return
def generate_rows():
for i, row in enumerate(row_set):
record = {}
try:
for cell, column in zip(row, columns):
record[column.name] = string_value(cell.value)
if len(record):
for column in columns:
record[column.name] = record.get(column.name, None)
yield record
except Exception as exception:
log.warning("Could not decode row %s in %s: %s",
i, meta, exception)
document.insert_records(sheet, generate_rows())
return tabular
示例6: main
def main(argv=None):
args = parse_args(argv)
if args.file is None:
# slurp the whole input since there seems to be a bug in messytables
# which should be able to handle streams but doesn't
args.file = cStringIO.StringIO(sys.stdin.read())
relation_key = args_to_relation_key(args)
table_set = any_tableset(args.file)
if len(table_set.tables) != 1:
raise ValueError("Can only handle files with a single table, not %s" % len(table_set.tables))
row_set = table_set.tables[0]
# guess header names and the offset of the header:
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(strip_processor())
row_set.register_processor(headers_processor(headers))
# Temporarily, mark the offset of the header
row_set.register_processor(offset_processor(offset + 1))
# guess types and register them
types = type_guess(replace_empty_string(row_set.sample), strict=True, types=[StringType, DecimalType, IntegerType])
row_set.register_processor(types_processor(types))
# Messytables seems to not handle the case where there are no headers.
# Work around this as follows:
# 1) offset must be 0
# 2) if the types of the data match the headers, assume there are
# actually no headers
if offset == 0:
try:
[t.cast(v) for (t, v) in zip(types, headers)]
except:
pass
else:
# We don't need the headers_processor or the offset_processor
row_set._processors = []
row_set.register_processor(strip_processor())
row_set.register_processor(types_processor(types))
headers = None
# Construct the Myria schema
schema = messy_to_schema(types, headers)
logging.info("Myria schema: {}".format(json.dumps(schema)))
# Prepare data for writing to Myria
data, kwargs = write_data(row_set, schema)
if not args.dry:
# Connect to Myria and send the data
connection = myria.MyriaConnection(hostname=args.hostname, port=args.port, ssl=args.ssl)
ret = connection.upload_file(relation_key, schema, data, args.overwrite, **kwargs)
sys.stdout.write(pretty_json(ret))
else:
sys.stdout.write(data)
示例7: lines
def lines(self):
fh = urlopen(self.source.url)
row_set = CSVRowSet('data', fh, window=3)
headers = list(row_set.sample)[0]
headers = [c.value for c in headers]
row_set.register_processor(headers_processor(headers))
row_set.register_processor(offset_processor(1))
for row in row_set:
yield dict([(c.column, c.value) for c in row])
示例8: test_read_head_offset_excel
def test_read_head_offset_excel(self):
fh = horror_fobj("simple.xls")
table_set = XLSTableSet(fh)
row_set = table_set.tables[0]
offset, headers = headers_guess(row_set.sample)
assert_equal(offset, 0)
row_set.register_processor(offset_processor(offset + 1))
data = list(row_set.sample)
assert_equal(int(data[0][1].value), 1)
data = list(row_set)
assert_equal(int(data[0][1].value), 1)
示例9: test_read_encoded_characters_csv
def test_read_encoded_characters_csv(self):
fh = horror_fobj('characters.csv')
table_set = CSVTableSet(fh)
row_set = table_set.tables[0]
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(headers_processor(headers))
row_set.register_processor(offset_processor(offset + 1))
data = list(row_set)
assert_equal(382, len(data))
assert_equal(data[0][2].value, u'雲嘉南濱海國家風景區管理處')
assert_equal(data[-1][2].value, u'沈光文紀念廳')
示例10: parse
def parse(stream, excel_type='xls', sheet=1, guess_types=True, **kwargs):
'''Parse Excel (xls or xlsx) to structured objects.
:param excel_type: xls | xlsx
:param sheet: index of sheet in spreadsheet to convert (starting from index = 1)
'''
sheet_number = int(sheet) - 1
xlsclass = XLSTableSet
if excel_type == 'xlsx':
xlsclass = XLSXTableSet
table_set = xlsclass.from_fileobj(stream)
try:
row_set = table_set.tables[sheet_number]
except IndexError:
raise Exception('This file does not have sheet number %d' %
(sheet_number + 1))
offset, headers = headers_guess(row_set.sample)
fields = []
dup_columns = {}
noname_count = 1
if guess_types:
guess_types = [StringType, IntegerType, FloatType, DecimalType,
DateUtilType]
row_types = type_guess(row_set.sample, guess_types)
for index, field in enumerate(headers):
field_dict = {}
if "" == field:
field = '_'.join(['column', str(noname_count)])
headers[index] = field
noname_count += 1
if headers.count(field) == 1:
field_dict['id'] = field
else:
dup_columns[field] = dup_columns.get(field, 0) + 1
field_dict['id'] = u'_'.join([field, str(dup_columns[field])])
if guess_types:
if isinstance(row_types[index], DateUtilType):
field_dict['type'] = 'DateTime'
else:
field_dict['type'] = str(row_types[index])
fields.append(field_dict)
row_set.register_processor(headers_processor([x['id'] for x in fields]))
row_set.register_processor(offset_processor(offset + 1))
def row_iterator():
for row in row_set:
data_row = {}
for index, cell in enumerate(row):
data_row[cell.column] = cell.value
yield data_row
return row_iterator(), {'fields': fields}
示例11: proc
def proc(f, database_name, table_name):
table_set = messytables.any_tableset(f)
row_set = table_set.tables[0]
# guess header names and the offset of the header:
offset, headers = messytables.headers_guess(row_set.sample)
row_set.register_processor(messytables.headers_processor(headers))
row_set.register_processor(messytables.offset_processor(offset + 1))
types = messytables.type_guess(row_set.sample, types=[
messytables.types.StringType,
messytables.types.DateType,
], strict=True)
hive_data_file = tempfile.NamedTemporaryFile(mode='w')
fields_ddl = ','.join([
' {0} {1}\n'.format(
canonicalize_column_name(colName),
hive_column_type(colType)
)
for colName, colType in zip(headers, types)
])
hive_sql = '''
DROP TABLE IF EXISTS {0};
CREATE TABLE {0} (
{1}
)
STORED AS TEXTFILE
TBLPROPERTIES ("comment"="add_messytable on {3}");
LOAD DATA LOCAL INPATH '{2}' OVERWRITE INTO TABLE {0};
'''.format(table_name, fields_ddl, hive_data_file.name,
datetime.datetime.now().isoformat())
hive_cmd_file = tempfile.NamedTemporaryFile(mode='w')
print(hive_sql, file=hive_cmd_file)
hive_cmd_file.flush()
row_set.register_processor(messytables.types_processor(types))
for row in row_set:
print('\001'.join(map(str, [ c.value for c in row])),
file=hive_data_file)
hive_data_file.flush()
subprocess.call([
'hive',
'--database', database_name,
'-f', hive_cmd_file.name,
])
示例12: test_read_head_padding_csv
def test_read_head_padding_csv(self):
fh = horror_fobj("weird_head_padding.csv")
table_set = CSVTableSet(fh)
row_set = table_set.tables[0]
offset, headers = headers_guess(row_set.sample)
assert 11 == len(headers), headers
assert_equal(u"1985", headers[1].strip())
row_set.register_processor(headers_processor(headers))
row_set.register_processor(offset_processor(offset + 1))
data = list(row_set.sample)
for row in row_set:
assert_equal(11, len(row))
value = data[1][0].value.strip()
assert value == u"Gefäßchirurgie", value
示例13: get_diff
def get_diff(self, filename1, filename2):
# print("get_diff", filename1, filename2)
ext = filename1.split(".")[-1].lower()
if ext not in ['csv', 'tsv', 'xls']:
return None
csvs = {}
for f in [filename1, filename2]:
# print("Loading file", f)
table_set = self.read_file(f)
if table_set is None:
raise Exception("Invalid table set")
row_set = table_set.tables[0]
#print("Guessing headers")
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(headers_processor(headers))
row_set.register_processor(offset_processor(offset+1))
# Output of rowset is a structure
csvs[f] = [headers]
for row in row_set:
csvs[f].append([r.value for r in row])
#print(csvs[f][:3])
# Loaded csv1 and csv2
table1 = daff.PythonTableView(csvs[filename1])
table2 = daff.PythonTableView(csvs[filename2])
alignment = daff.Coopy.compareTables(table1,table2).align()
# print("Achieved alignment")
data_diff = []
table_diff = daff.PythonTableView(data_diff)
flags = daff.CompareFlags()
highlighter = daff.TableDiff(alignment,flags)
highlighter.hilite(table_diff)
# Parse the differences
#print("Parsing diff")
diff = self.parse_diff(table_diff)
# print("Computed diff", diff)
return diff
示例14: test_file_with_few_strings_among_integers
def test_file_with_few_strings_among_integers(self):
fh = horror_fobj('mixedGLB.csv')
rows = CSVTableSet(fh).tables[0]
offset, headers = headers_guess(rows.sample)
rows.register_processor(offset_processor(offset + 1))
types = [StringType, IntegerType, DecimalType, DateUtilType]
guessed_types = type_guess(rows.sample, types, True)
assert_equal(len(guessed_types), 19)
print guessed_types
assert_equal(guessed_types, [
IntegerType(), IntegerType(),
IntegerType(), IntegerType(), IntegerType(), IntegerType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), StringType(), StringType(),
StringType(), StringType(), IntegerType(), StringType(),
StringType()])
示例15: test_guess_headers
def test_guess_headers(self):
fh = horror_fobj("weird_head_padding.csv")
table_set = CSVTableSet(fh)
row_set = table_set.tables[0]
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(headers_processor(headers))
row_set.register_processor(offset_processor(offset + 1))
data = list(row_set)
assert "Frauenheilkunde" in data[9][0].value, data[9][0].value
fh = horror_fobj("weird_head_padding.csv")
table_set = CSVTableSet(fh)
row_set = table_set.tables[0]
row_set.register_processor(headers_processor(["foo", "bar"]))
data = list(row_set)
assert "foo" in data[12][0].column, data[12][0]
assert "Chirurgie" in data[12][0].value, data[12][0].value