本文整理汇总了Python中menpo.transform.UniformScale.apply方法的典型用法代码示例。如果您正苦于以下问题:Python UniformScale.apply方法的具体用法?Python UniformScale.apply怎么用?Python UniformScale.apply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类menpo.transform.UniformScale
的用法示例。
在下文中一共展示了UniformScale.apply方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: detect
# 需要导入模块: from menpo.transform import UniformScale [as 别名]
# 或者: from menpo.transform.UniformScale import apply [as 别名]
def detect(detector_callable, image, greyscale=True, image_diagonal=None, group_prefix="object", channels_at_back=True):
r"""
Apply the general detection framework.
This involves converting the image to greyscale if necessary, rescaling
the image to a given diagonal, performing the detection, and attaching
the scaled landmarks back onto the original image.
uint8 images cannot be converted to greyscale by this framework, so must
already be greyscale or ``greyscale=False``.
Parameters
----------
detector_callable : `callable` or `function`
A callable object that will perform detection given a single parameter,
a `uint8` numpy array with either no channels, or channels as the
*last* axis.
image : `menpo.image.Image`
A Menpo image to detect. The bounding boxes of the detected objects
will be attached to this image.
greyscale : `bool`, optional
Convert the image to greyscale or not.
image_diagonal : `int`, optional
The total size of the diagonal of the image that should be used for
detection. This is useful for scaling images up and down for detection.
group_prefix : `str`, optional
The prefix string to be appended to each each landmark group that is
stored on the image. Each detection will be stored as group_prefix_#
where # is a count starting from 0.
channels_at_back : `bool`, optional
If ``True``, the image channels are placed onto the last axis (the back)
as is common in many imaging packages. This is contrary to the Menpo
default where channels are the first axis (at the front).
Returns
-------
bounding_boxes : `list` of `menpo.shape.PointDirectedGraph`
A list of bounding boxes representing the detections found.
"""
d_image = image
if greyscale:
d_image = _greyscale(d_image)
if image_diagonal is not None:
scale_factor = image_diagonal / image.diagonal()
d_image = d_image.rescale(scale_factor)
pcs = detector_callable(menpo_image_to_uint8(d_image, channels_at_back=channels_at_back))
if image_diagonal is not None:
s = UniformScale(1 / scale_factor, n_dims=2)
pcs = [s.apply(pc) for pc in pcs]
padding_magnitude = len(str(len(pcs)))
for i, pc in enumerate(pcs):
key = "{prefix}_{num:0{mag}d}".format(mag=padding_magnitude, prefix=group_prefix, num=i)
image.landmarks[key] = pc
return pcs
示例2: test_align_2d_uniform_scale_set_h_matrix_raises_notimplemented_error
# 需要导入模块: from menpo.transform import UniformScale [as 别名]
# 或者: from menpo.transform.UniformScale import apply [as 别名]
def test_align_2d_uniform_scale_set_h_matrix_raises_notimplemented_error():
scale = UniformScale(2.5, 2)
source = PointCloud(np.array([[0, 1], [1, 1], [-1, -5], [3, -5]]))
target = scale.apply(source)
# estimate the transform from source and source
estimate = AlignmentUniformScale(source, source)
# and set the target
estimate.set_h_matrix(scale.h_matrix)
示例3: test_align_2d_uniform_scale
# 需要导入模块: from menpo.transform import UniformScale [as 别名]
# 或者: from menpo.transform.UniformScale import apply [as 别名]
def test_align_2d_uniform_scale():
scale = UniformScale(2.5, 2)
source = PointCloud(np.array([[0, 1], [1, 1], [-1, -5], [3, -5]]))
target = scale.apply(source)
# estimate the transform from source and target
estimate = AlignmentUniformScale(source, target)
# check the estimates is correct
assert_allclose(scale.h_matrix, estimate.h_matrix)
示例4: test_homog_compose_before_alignment_nonuniformscale
# 需要导入模块: from menpo.transform import UniformScale [as 别名]
# 或者: from menpo.transform.UniformScale import apply [as 别名]
def test_homog_compose_before_alignment_nonuniformscale():
homog = Homogeneous(np.array([[0, 1, 0],
[1, 0, 0],
[0, 0, 1]]))
scale = UniformScale(2.5, 2)
source = PointCloud(np.array([[0, 1],
[1, 1],
[-1, -5],
[3, -5]]))
target = scale.apply(source)
# estimate the transform from source and target
s = AlignmentUniformScale(source, target)
res = homog.compose_before(s)
assert(type(res) == Homogeneous)