当前位置: 首页>>代码示例>>Python>>正文


Python UniformScale.apply方法代码示例

本文整理汇总了Python中menpo.transform.UniformScale.apply方法的典型用法代码示例。如果您正苦于以下问题:Python UniformScale.apply方法的具体用法?Python UniformScale.apply怎么用?Python UniformScale.apply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在menpo.transform.UniformScale的用法示例。


在下文中一共展示了UniformScale.apply方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: detect

# 需要导入模块: from menpo.transform import UniformScale [as 别名]
# 或者: from menpo.transform.UniformScale import apply [as 别名]
def detect(detector_callable, image, greyscale=True, image_diagonal=None, group_prefix="object", channels_at_back=True):
    r"""
    Apply the general detection framework.

    This involves converting the image to greyscale if necessary, rescaling
    the image to a given diagonal, performing the detection, and attaching
    the scaled landmarks back onto the original image.

    uint8 images cannot be converted to greyscale by this framework, so must
    already be greyscale or ``greyscale=False``.

    Parameters
    ----------
    detector_callable : `callable` or `function`
        A callable object that will perform detection given a single parameter,
        a `uint8` numpy array with either no channels, or channels as the
        *last* axis.
    image : `menpo.image.Image`
        A Menpo image to detect. The bounding boxes of the detected objects
        will be attached to this image.
    greyscale : `bool`, optional
        Convert the image to greyscale or not.
    image_diagonal : `int`, optional
        The total size of the diagonal of the image that should be used for
        detection. This is useful for scaling images up and down for detection.
    group_prefix : `str`, optional
        The prefix string to be appended to each each landmark group that is
        stored on the image. Each detection will be stored as group_prefix_#
        where # is a count starting from 0.
    channels_at_back : `bool`, optional
        If ``True``, the image channels are placed onto the last axis (the back)
        as is common in many imaging packages. This is contrary to the Menpo
        default where channels are the first axis (at the front).

    Returns
    -------
    bounding_boxes : `list` of `menpo.shape.PointDirectedGraph`
        A list of bounding boxes representing the detections found.
    """
    d_image = image

    if greyscale:
        d_image = _greyscale(d_image)

    if image_diagonal is not None:
        scale_factor = image_diagonal / image.diagonal()
        d_image = d_image.rescale(scale_factor)

    pcs = detector_callable(menpo_image_to_uint8(d_image, channels_at_back=channels_at_back))

    if image_diagonal is not None:
        s = UniformScale(1 / scale_factor, n_dims=2)
        pcs = [s.apply(pc) for pc in pcs]

    padding_magnitude = len(str(len(pcs)))
    for i, pc in enumerate(pcs):
        key = "{prefix}_{num:0{mag}d}".format(mag=padding_magnitude, prefix=group_prefix, num=i)
        image.landmarks[key] = pc
    return pcs
开发者ID:menpo,项目名称:menpodetect,代码行数:61,代码来源:detect.py

示例2: test_align_2d_uniform_scale_set_h_matrix_raises_notimplemented_error

# 需要导入模块: from menpo.transform import UniformScale [as 别名]
# 或者: from menpo.transform.UniformScale import apply [as 别名]
def test_align_2d_uniform_scale_set_h_matrix_raises_notimplemented_error():
    scale = UniformScale(2.5, 2)
    source = PointCloud(np.array([[0, 1], [1, 1], [-1, -5], [3, -5]]))
    target = scale.apply(source)
    # estimate the transform from source and source
    estimate = AlignmentUniformScale(source, source)
    # and set the target
    estimate.set_h_matrix(scale.h_matrix)
开发者ID:kritsong,项目名称:menpo,代码行数:10,代码来源:h_align_test.py

示例3: test_align_2d_uniform_scale

# 需要导入模块: from menpo.transform import UniformScale [as 别名]
# 或者: from menpo.transform.UniformScale import apply [as 别名]
def test_align_2d_uniform_scale():
    scale = UniformScale(2.5, 2)
    source = PointCloud(np.array([[0, 1], [1, 1], [-1, -5], [3, -5]]))
    target = scale.apply(source)
    # estimate the transform from source and target
    estimate = AlignmentUniformScale(source, target)
    # check the estimates is correct
    assert_allclose(scale.h_matrix, estimate.h_matrix)
开发者ID:kritsong,项目名称:menpo,代码行数:10,代码来源:h_align_test.py

示例4: test_homog_compose_before_alignment_nonuniformscale

# 需要导入模块: from menpo.transform import UniformScale [as 别名]
# 或者: from menpo.transform.UniformScale import apply [as 别名]
def test_homog_compose_before_alignment_nonuniformscale():
    homog = Homogeneous(np.array([[0, 1, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]]))
    scale = UniformScale(2.5, 2)
    source = PointCloud(np.array([[0, 1],
                                  [1, 1],
                                  [-1, -5],
                                  [3, -5]]))
    target = scale.apply(source)
    # estimate the transform from source and target
    s = AlignmentUniformScale(source, target)
    res = homog.compose_before(s)
    assert(type(res) == Homogeneous)
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:16,代码来源:test_h_compose.py


注:本文中的menpo.transform.UniformScale.apply方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。