当前位置: 首页>>代码示例>>Python>>正文


Python shape.LabelledPointUndirectedGraph类代码示例

本文整理汇总了Python中menpo.shape.LabelledPointUndirectedGraph的典型用法代码示例。如果您正苦于以下问题:Python LabelledPointUndirectedGraph类的具体用法?Python LabelledPointUndirectedGraph怎么用?Python LabelledPointUndirectedGraph使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了LabelledPointUndirectedGraph类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_LabelledPointUndirectedGraph_remove_label

def test_LabelledPointUndirectedGraph_remove_label():
    lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict_3)

    new_lgroup = lgroup.remove_label('lower')

    assert 'all' in new_lgroup.labels
    assert 'lower' not in new_lgroup.labels
    assert 'all' in lgroup.labels
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:8,代码来源:group_test.py

示例2: test_LabelledPointUndirectedGraph_add_label

def test_LabelledPointUndirectedGraph_add_label():
    lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict_2)

    new_lgroup = lgroup.add_label('lower2', [0, 1])
    assert not is_same_array(new_lgroup.points, lgroup.points)

    lower_pcloud = new_lgroup.get_label('lower2')
    assert lower_pcloud.n_points == 2
    assert_allclose(lower_pcloud.points[0, :], [1., 1., 1.])
    assert_allclose(lower_pcloud.points[1, :], [1., 1., 1.])
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:10,代码来源:group_test.py

示例3: test_LabelledPointUndirectedGraph_copy_method

def test_LabelledPointUndirectedGraph_copy_method():
    lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict)
    lgroup_copy = lgroup.copy()

    assert not is_same_array(lgroup_copy.points, lgroup.points)
    # Check the mask dictionary is deepcopied properly
    assert lgroup._labels_to_masks is not lgroup_copy._labels_to_masks
    masks = zip(lgroup_copy._labels_to_masks.values(),
                lgroup._labels_to_masks.values())
    for ms in masks:
        assert ms[0] is not ms[1]
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:11,代码来源:group_test.py

示例4: test_LabelledPointUndirectedGraph_add_ordered_labels

def test_LabelledPointUndirectedGraph_add_ordered_labels():
    lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict_2)

    labels = lgroup.labels
    assert labels[0] == 'lower'
    assert labels[1] == 'upper'

    new_lgroup = lgroup.add_label('A', [0, 1])
    new_labels = new_lgroup.labels

    assert new_labels[2] == 'A'
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:11,代码来源:group_test.py

示例5: test_LabelledPointUndirectedGraph_with_labels

def test_LabelledPointUndirectedGraph_with_labels():
    lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict_2)

    new_lgroup = lgroup.with_labels('lower')

    assert new_lgroup.n_labels == 1
    assert new_lgroup.n_points == 6
    assert 'lower' in new_lgroup.labels

    new_lgroup = lgroup.with_labels(['lower'])

    assert new_lgroup.n_labels == 1
    assert new_lgroup.n_points == 6
    assert 'lower' in new_lgroup.labels
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:14,代码来源:group_test.py

示例6: eye_ibug_close_17_to_eye_ibug_close_17

def eye_ibug_close_17_to_eye_ibug_close_17(pcloud):
    r"""
    Apply the IBUG 17-point close eye semantic labels.

    The semantic labels applied are as follows:

      - upper_eyelid
      - lower_eyelid
    """
    from menpo.shape import LabelledPointUndirectedGraph

    n_expected_points = 17
    validate_input(pcloud, n_expected_points)

    upper_indices, upper_connectivity = _build_upper_eyelid()

    middle_indices = np.arange(12, 17)
    bottom_indices = np.arange(6, 12)
    lower_indices = np.hstack((bottom_indices, 0, middle_indices))
    lower_connectivity = list(zip(bottom_indices, bottom_indices[1:]))
    lower_connectivity += [(0, 12)]
    lower_connectivity += list(zip(middle_indices, middle_indices[1:]))
    lower_connectivity += [(11, 0)]

    all_connectivity = np.asarray(upper_connectivity + lower_connectivity)

    mapping = OrderedDict()
    mapping['upper_eyelid'] = upper_indices
    mapping['lower_eyelid'] = lower_indices

    new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
        pcloud.points, all_connectivity, mapping)

    return new_pcloud, mapping
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:34,代码来源:face.py

示例7: car_streetscene_20_to_car_streetscene_view_5_10

def car_streetscene_20_to_car_streetscene_view_5_10(pcloud):
    r"""
    Apply the 10-point semantic labels of "view 5" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import LabelledPointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)

    all_connectivity = right_side_connectivity

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices

    ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
    new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
        pcloud.points[ind], all_connectivity, mapping)

    return new_pcloud, mapping
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:33,代码来源:car.py

示例8: _parse_ljson_v1

def _parse_ljson_v1(lms_dict):
    all_points = []
    labels = []  # label per group
    labels_slices = []  # slices into the full pointcloud per label
    offset = 0
    connectivity = []
    for group in lms_dict['groups']:
        lms = group['landmarks']
        labels.append(group['label'])
        labels_slices.append(slice(offset, len(lms) + offset))
        # Create the connectivity if it exists
        conn = group.get('connectivity', [])
        if conn:
            # Offset relative connectivity according to the current index
            conn = offset + np.asarray(conn)
            connectivity += conn.tolist()
        for p in lms:
            all_points.append(p['point'])
        offset += len(lms)

    # Don't create a PointUndirectedGraph with no connectivity
    points = _ljson_parse_null_values(all_points)
    n_points = points.shape[0]

    labels_to_masks = OrderedDict()
    # go through each label and build the appropriate boolean array
    for label, l_slice in zip(labels, labels_slices):
        mask = np.zeros(n_points, dtype=np.bool)
        mask[l_slice] = True
        labels_to_masks[label] = mask

    lmarks = LabelledPointUndirectedGraph.init_from_edges(points, connectivity,
                                                          labels_to_masks)
    return {'LJSON': lmarks}
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:34,代码来源:landmark.py

示例9: eye_ibug_open_38_to_eye_ibug_open_38

def eye_ibug_open_38_to_eye_ibug_open_38(pcloud):
    r"""
    Apply the IBUG 38-point open eye semantic labels.

    The semantic labels applied are as follows:

      - upper_eyelid
      - lower_eyelid
      - iris
      - pupil
      - sclera
    """
    from menpo.shape import LabelledPointUndirectedGraph

    n_expected_points = 38
    validate_input(pcloud, n_expected_points)

    upper_el_indices, upper_el_connectivity = _build_upper_eyelid()

    iris_range = (22, 30)
    pupil_range = (30, 38)
    sclera_top = np.arange(12, 17)
    sclera_bottom = np.arange(17, 22)
    sclera_indices = np.hstack((0, sclera_top, 6, sclera_bottom))
    lower_el_top = np.arange(17, 22)
    lower_el_bottom = np.arange(7, 12)
    lower_el_indices = np.hstack((6, lower_el_top, 0, lower_el_bottom))

    iris_connectivity = connectivity_from_range(iris_range, close_loop=True)
    pupil_connectivity = connectivity_from_range(pupil_range, close_loop=True)

    sclera_connectivity = list(zip(sclera_top, sclera_top[1:]))
    sclera_connectivity += [(0, 21)]
    sclera_connectivity += list(zip(sclera_bottom, sclera_bottom[1:]))
    sclera_connectivity += [(6, 17)]

    lower_el_connectivity = list(zip(lower_el_top, lower_el_top[1:]))
    lower_el_connectivity += [(6, 7)]
    lower_el_connectivity += list(zip(lower_el_bottom, lower_el_bottom[1:]))
    lower_el_connectivity += [(11, 0)]

    all_connectivity = np.asarray(upper_el_connectivity +
                                  lower_el_connectivity +
                                  iris_connectivity.tolist() +
                                  pupil_connectivity.tolist() +
                                  sclera_connectivity)

    mapping = OrderedDict()
    mapping['upper_eyelid'] = upper_el_indices
    mapping['lower_eyelid'] = lower_el_indices
    mapping['pupil'] = np.arange(*pupil_range)
    mapping['iris'] = np.arange(*iris_range)
    mapping['sclera'] = sclera_indices

    new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
        pcloud.points, all_connectivity, mapping)

    return new_pcloud, mapping
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:58,代码来源:face.py

示例10: hand_ibug_39_to_hand_ibug_39

def hand_ibug_39_to_hand_ibug_39(pcloud):
    r"""
    Apply the IBUG 39-point semantic labels.

    The semantic labels applied are as follows:

      - thumb
      - index
      - middle
      - ring
      - pinky
      - palm
    """
    from menpo.shape import LabelledPointUndirectedGraph

    n_expected_points = 39
    validate_input(pcloud, n_expected_points)

    thumb_indices = np.arange(0, 5)
    index_indices = np.arange(5, 12)
    middle_indices = np.arange(12, 19)
    ring_indices = np.arange(19, 26)
    pinky_indices = np.arange(26, 33)
    palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34, 4]),
                              np.arange(35, 39)))

    thumb_connectivity = connectivity_from_array(thumb_indices,
                                                 close_loop=False)
    index_connectivity = connectivity_from_array(index_indices,
                                                 close_loop=False)
    middle_connectivity = connectivity_from_array(middle_indices,
                                                  close_loop=False)
    ring_connectivity = connectivity_from_array(ring_indices,
                                                close_loop=False)
    pinky_connectivity = connectivity_from_array(pinky_indices,
                                                 close_loop=False)
    palm_connectivity = connectivity_from_array(palm_indices,
                                                close_loop=True)

    all_connectivity = np.vstack([thumb_connectivity, index_connectivity,
                                  middle_connectivity, ring_connectivity,
                                  pinky_connectivity, palm_connectivity])

    mapping = OrderedDict()
    mapping['thumb'] = thumb_indices
    mapping['index'] = index_indices
    mapping['middle'] = middle_indices
    mapping['ring'] = ring_indices
    mapping['pinky'] = pinky_indices
    mapping['palm'] = palm_indices

    new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
        pcloud.points, all_connectivity, mapping)

    return new_pcloud, mapping
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:55,代码来源:hand.py

示例11: car_streetscene_20_to_car_streetscene_view_1_14

def car_streetscene_20_to_car_streetscene_view_1_14(pcloud):
    """
    Apply the 14-point semantic labels of "view 1" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - front
      - bonnet
      - windshield
      - left_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import LabelledPointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    front_indices = np.array([0, 1, 3, 2])
    bonnet_indices = np.array([2, 3, 5, 4])
    windshield_indices = np.array([4, 5, 7, 6])
    left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])

    front_connectivity = connectivity_from_array(front_indices,
                                                 close_loop=True)
    bonnet_connectivity = connectivity_from_array(bonnet_indices,
                                                  close_loop=True)
    windshield_connectivity = connectivity_from_array(windshield_indices,
                                                      close_loop=True)
    left_side_connectivity = connectivity_from_array(left_side_indices,
                                                     close_loop=True)

    all_connectivity = np.vstack([
        front_connectivity, bonnet_connectivity, windshield_connectivity,
        left_side_connectivity
    ])

    mapping = OrderedDict()
    mapping['front'] = front_indices
    mapping['bonnet'] = bonnet_indices
    mapping['windshield'] = windshield_indices
    mapping['left_side'] = left_side_indices

    ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
    new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
        pcloud.points[ind], all_connectivity, mapping)

    return new_pcloud, mapping
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:51,代码来源:car.py

示例12: pose_lsp_14_to_pose_lsp_14

def pose_lsp_14_to_pose_lsp_14(pcloud):
    r"""
    Apply the lsp 14-point semantic labels.

    The semantic labels applied are as follows:

      - left_leg
      - right_leg
      - left_arm
      - right_arm
      - head

    References
    ----------
    .. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
    """
    from menpo.shape import LabelledPointUndirectedGraph

    n_expected_points = 14
    validate_input(pcloud, n_expected_points)

    left_leg_indices = np.arange(0, 3)
    right_leg_indices = np.arange(3, 6)
    left_arm_indices = np.arange(6, 9)
    right_arm_indices = np.arange(9, 12)
    head_indices = np.arange(12, 14)

    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    head_connectivity = connectivity_from_array(head_indices)

    all_connectivity = np.vstack([
        left_leg_connectivity, right_leg_connectivity,
        left_arm_connectivity, right_arm_connectivity,
        head_connectivity
    ])

    mapping = OrderedDict()
    mapping['left_leg'] = left_leg_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_arm'] = left_arm_indices
    mapping['right_arm'] = right_arm_indices
    mapping['head'] = head_indices

    new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
        pcloud.points, all_connectivity, mapping)

    return new_pcloud, mapping
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:50,代码来源:pose.py

示例13: car_streetscene_20_to_car_streetscene_view_6_14

def car_streetscene_20_to_car_streetscene_view_6_14(pcloud):
    r"""
    Apply the 14-point semantic labels of "view 6" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side
      - rear_windshield
      - trunk
      - rear

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import LabelledPointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
    rear_windshield_indices = np.array([4, 5, 7, 6])
    trunk_indices = np.array([6, 7, 9, 8])
    rear_indices = np.array([8, 9, 11, 10])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)
    rear_windshield_connectivity = connectivity_from_array(
        rear_windshield_indices, close_loop=True)
    trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
    rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)

    all_connectivity = np.vstack([
        right_side_connectivity, rear_windshield_connectivity,
        trunk_connectivity, rear_connectivity
    ])

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices
    mapping['rear_windshield'] = rear_windshield_indices
    mapping['trunk'] = trunk_indices
    mapping['rear'] = rear_indices

    ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
    new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
        pcloud.points[ind], all_connectivity, mapping)

    return new_pcloud, mapping
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:49,代码来源:car.py

示例14: _parse_ljson_v2

def _parse_ljson_v2(lms_dict):
    points = _ljson_parse_null_values(lms_dict['landmarks']['points'])
    connectivity = lms_dict['landmarks'].get('connectivity')

    if connectivity is None and len(lms_dict['labels']) == 0:
        return PointCloud(points)
    else:
        labels_to_mask = OrderedDict() # masks into the pointcloud per label
        n_points = points.shape[0]
        for label in lms_dict['labels']:
            mask = np.zeros(n_points, dtype=np.bool)
            mask[label['mask']] = True
            labels_to_mask[label['label']] = mask
        # Note that we can pass connectivity as None here and the edges will be
        # empty.
        return LabelledPointUndirectedGraph.init_from_edges(
            points, connectivity, labels_to_mask)
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:17,代码来源:landmark.py

示例15: pcloud_and_lgroup_from_ranges

def pcloud_and_lgroup_from_ranges(pointcloud, labels_to_ranges):
    """
    Label the given pointcloud according to the given ordered dictionary
    of labels to ranges. This assumes that you can semantically label the group
    by using ranges in to the existing points e.g ::

        labels_to_ranges = {'jaw': (0, 17, False)}

    The third element of the range tuple is whether the range is a closed loop
    or not. For example, for an eye landmark this would be ``True``, as you
    do want to create a closed loop for an eye.

    Parameters
    ----------
    pointcloud : :map:`PointCloud`
        The pointcloud to apply semantic labels to.
    labels_to_ranges : `ordereddict` {`str` -> (`int`, `int`, `bool`)}
        Ordered dictionary of string labels to range tuples.

    Returns
    -------
    new_pcloud : :map:`PointCloud`
        New pointcloud with specific connectivity information applied.
    mapping : `ordereddict` {`str` -> `int ndarray`}
        For each label, the indices in to the pointcloud that belong to the
        label.
    """
    from menpo.shape import LabelledPointUndirectedGraph

    mapping = OrderedDict()
    all_connectivity = []
    for label, tup in labels_to_ranges.items():
        range_tuple = tup[:-1]
        close_loop = tup[-1]

        connectivity = connectivity_from_range(range_tuple,
                                               close_loop=close_loop)
        all_connectivity.append(connectivity)
        mapping[label] = np.arange(*range_tuple)
    all_connectivity = np.vstack(all_connectivity)

    new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
        pointcloud.points, all_connectivity, mapping)

    return new_pcloud, mapping
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:45,代码来源:base.py


注:本文中的menpo.shape.LabelledPointUndirectedGraph类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。