本文整理汇总了Python中menpo.shape.LabelledPointUndirectedGraph类的典型用法代码示例。如果您正苦于以下问题:Python LabelledPointUndirectedGraph类的具体用法?Python LabelledPointUndirectedGraph怎么用?Python LabelledPointUndirectedGraph使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了LabelledPointUndirectedGraph类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_LabelledPointUndirectedGraph_remove_label
def test_LabelledPointUndirectedGraph_remove_label():
lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict_3)
new_lgroup = lgroup.remove_label('lower')
assert 'all' in new_lgroup.labels
assert 'lower' not in new_lgroup.labels
assert 'all' in lgroup.labels
示例2: test_LabelledPointUndirectedGraph_add_label
def test_LabelledPointUndirectedGraph_add_label():
lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict_2)
new_lgroup = lgroup.add_label('lower2', [0, 1])
assert not is_same_array(new_lgroup.points, lgroup.points)
lower_pcloud = new_lgroup.get_label('lower2')
assert lower_pcloud.n_points == 2
assert_allclose(lower_pcloud.points[0, :], [1., 1., 1.])
assert_allclose(lower_pcloud.points[1, :], [1., 1., 1.])
示例3: test_LabelledPointUndirectedGraph_copy_method
def test_LabelledPointUndirectedGraph_copy_method():
lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict)
lgroup_copy = lgroup.copy()
assert not is_same_array(lgroup_copy.points, lgroup.points)
# Check the mask dictionary is deepcopied properly
assert lgroup._labels_to_masks is not lgroup_copy._labels_to_masks
masks = zip(lgroup_copy._labels_to_masks.values(),
lgroup._labels_to_masks.values())
for ms in masks:
assert ms[0] is not ms[1]
示例4: test_LabelledPointUndirectedGraph_add_ordered_labels
def test_LabelledPointUndirectedGraph_add_ordered_labels():
lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict_2)
labels = lgroup.labels
assert labels[0] == 'lower'
assert labels[1] == 'upper'
new_lgroup = lgroup.add_label('A', [0, 1])
new_labels = new_lgroup.labels
assert new_labels[2] == 'A'
示例5: test_LabelledPointUndirectedGraph_with_labels
def test_LabelledPointUndirectedGraph_with_labels():
lgroup = LabelledPointUndirectedGraph(points, adjacency_matrix, mask_dict_2)
new_lgroup = lgroup.with_labels('lower')
assert new_lgroup.n_labels == 1
assert new_lgroup.n_points == 6
assert 'lower' in new_lgroup.labels
new_lgroup = lgroup.with_labels(['lower'])
assert new_lgroup.n_labels == 1
assert new_lgroup.n_points == 6
assert 'lower' in new_lgroup.labels
示例6: eye_ibug_close_17_to_eye_ibug_close_17
def eye_ibug_close_17_to_eye_ibug_close_17(pcloud):
r"""
Apply the IBUG 17-point close eye semantic labels.
The semantic labels applied are as follows:
- upper_eyelid
- lower_eyelid
"""
from menpo.shape import LabelledPointUndirectedGraph
n_expected_points = 17
validate_input(pcloud, n_expected_points)
upper_indices, upper_connectivity = _build_upper_eyelid()
middle_indices = np.arange(12, 17)
bottom_indices = np.arange(6, 12)
lower_indices = np.hstack((bottom_indices, 0, middle_indices))
lower_connectivity = list(zip(bottom_indices, bottom_indices[1:]))
lower_connectivity += [(0, 12)]
lower_connectivity += list(zip(middle_indices, middle_indices[1:]))
lower_connectivity += [(11, 0)]
all_connectivity = np.asarray(upper_connectivity + lower_connectivity)
mapping = OrderedDict()
mapping['upper_eyelid'] = upper_indices
mapping['lower_eyelid'] = lower_indices
new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
pcloud.points, all_connectivity, mapping)
return new_pcloud, mapping
示例7: car_streetscene_20_to_car_streetscene_view_5_10
def car_streetscene_20_to_car_streetscene_view_5_10(pcloud):
r"""
Apply the 10-point semantic labels of "view 5" from the MIT Street Scene
Car dataset (originally a 20-point markup).
The semantic labels applied are as follows:
- right_side
References
----------
.. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
"""
from menpo.shape import LabelledPointUndirectedGraph
n_expected_points = 20
validate_input(pcloud, n_expected_points)
right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])
right_side_connectivity = connectivity_from_array(right_side_indices,
close_loop=True)
all_connectivity = right_side_connectivity
mapping = OrderedDict()
mapping['right_side'] = right_side_indices
ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
pcloud.points[ind], all_connectivity, mapping)
return new_pcloud, mapping
示例8: _parse_ljson_v1
def _parse_ljson_v1(lms_dict):
all_points = []
labels = [] # label per group
labels_slices = [] # slices into the full pointcloud per label
offset = 0
connectivity = []
for group in lms_dict['groups']:
lms = group['landmarks']
labels.append(group['label'])
labels_slices.append(slice(offset, len(lms) + offset))
# Create the connectivity if it exists
conn = group.get('connectivity', [])
if conn:
# Offset relative connectivity according to the current index
conn = offset + np.asarray(conn)
connectivity += conn.tolist()
for p in lms:
all_points.append(p['point'])
offset += len(lms)
# Don't create a PointUndirectedGraph with no connectivity
points = _ljson_parse_null_values(all_points)
n_points = points.shape[0]
labels_to_masks = OrderedDict()
# go through each label and build the appropriate boolean array
for label, l_slice in zip(labels, labels_slices):
mask = np.zeros(n_points, dtype=np.bool)
mask[l_slice] = True
labels_to_masks[label] = mask
lmarks = LabelledPointUndirectedGraph.init_from_edges(points, connectivity,
labels_to_masks)
return {'LJSON': lmarks}
示例9: eye_ibug_open_38_to_eye_ibug_open_38
def eye_ibug_open_38_to_eye_ibug_open_38(pcloud):
r"""
Apply the IBUG 38-point open eye semantic labels.
The semantic labels applied are as follows:
- upper_eyelid
- lower_eyelid
- iris
- pupil
- sclera
"""
from menpo.shape import LabelledPointUndirectedGraph
n_expected_points = 38
validate_input(pcloud, n_expected_points)
upper_el_indices, upper_el_connectivity = _build_upper_eyelid()
iris_range = (22, 30)
pupil_range = (30, 38)
sclera_top = np.arange(12, 17)
sclera_bottom = np.arange(17, 22)
sclera_indices = np.hstack((0, sclera_top, 6, sclera_bottom))
lower_el_top = np.arange(17, 22)
lower_el_bottom = np.arange(7, 12)
lower_el_indices = np.hstack((6, lower_el_top, 0, lower_el_bottom))
iris_connectivity = connectivity_from_range(iris_range, close_loop=True)
pupil_connectivity = connectivity_from_range(pupil_range, close_loop=True)
sclera_connectivity = list(zip(sclera_top, sclera_top[1:]))
sclera_connectivity += [(0, 21)]
sclera_connectivity += list(zip(sclera_bottom, sclera_bottom[1:]))
sclera_connectivity += [(6, 17)]
lower_el_connectivity = list(zip(lower_el_top, lower_el_top[1:]))
lower_el_connectivity += [(6, 7)]
lower_el_connectivity += list(zip(lower_el_bottom, lower_el_bottom[1:]))
lower_el_connectivity += [(11, 0)]
all_connectivity = np.asarray(upper_el_connectivity +
lower_el_connectivity +
iris_connectivity.tolist() +
pupil_connectivity.tolist() +
sclera_connectivity)
mapping = OrderedDict()
mapping['upper_eyelid'] = upper_el_indices
mapping['lower_eyelid'] = lower_el_indices
mapping['pupil'] = np.arange(*pupil_range)
mapping['iris'] = np.arange(*iris_range)
mapping['sclera'] = sclera_indices
new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
pcloud.points, all_connectivity, mapping)
return new_pcloud, mapping
示例10: hand_ibug_39_to_hand_ibug_39
def hand_ibug_39_to_hand_ibug_39(pcloud):
r"""
Apply the IBUG 39-point semantic labels.
The semantic labels applied are as follows:
- thumb
- index
- middle
- ring
- pinky
- palm
"""
from menpo.shape import LabelledPointUndirectedGraph
n_expected_points = 39
validate_input(pcloud, n_expected_points)
thumb_indices = np.arange(0, 5)
index_indices = np.arange(5, 12)
middle_indices = np.arange(12, 19)
ring_indices = np.arange(19, 26)
pinky_indices = np.arange(26, 33)
palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34, 4]),
np.arange(35, 39)))
thumb_connectivity = connectivity_from_array(thumb_indices,
close_loop=False)
index_connectivity = connectivity_from_array(index_indices,
close_loop=False)
middle_connectivity = connectivity_from_array(middle_indices,
close_loop=False)
ring_connectivity = connectivity_from_array(ring_indices,
close_loop=False)
pinky_connectivity = connectivity_from_array(pinky_indices,
close_loop=False)
palm_connectivity = connectivity_from_array(palm_indices,
close_loop=True)
all_connectivity = np.vstack([thumb_connectivity, index_connectivity,
middle_connectivity, ring_connectivity,
pinky_connectivity, palm_connectivity])
mapping = OrderedDict()
mapping['thumb'] = thumb_indices
mapping['index'] = index_indices
mapping['middle'] = middle_indices
mapping['ring'] = ring_indices
mapping['pinky'] = pinky_indices
mapping['palm'] = palm_indices
new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
pcloud.points, all_connectivity, mapping)
return new_pcloud, mapping
示例11: car_streetscene_20_to_car_streetscene_view_1_14
def car_streetscene_20_to_car_streetscene_view_1_14(pcloud):
"""
Apply the 14-point semantic labels of "view 1" from the MIT Street Scene
Car dataset (originally a 20-point markup).
The semantic labels applied are as follows:
- front
- bonnet
- windshield
- left_side
References
----------
.. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
"""
from menpo.shape import LabelledPointUndirectedGraph
n_expected_points = 20
validate_input(pcloud, n_expected_points)
front_indices = np.array([0, 1, 3, 2])
bonnet_indices = np.array([2, 3, 5, 4])
windshield_indices = np.array([4, 5, 7, 6])
left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])
front_connectivity = connectivity_from_array(front_indices,
close_loop=True)
bonnet_connectivity = connectivity_from_array(bonnet_indices,
close_loop=True)
windshield_connectivity = connectivity_from_array(windshield_indices,
close_loop=True)
left_side_connectivity = connectivity_from_array(left_side_indices,
close_loop=True)
all_connectivity = np.vstack([
front_connectivity, bonnet_connectivity, windshield_connectivity,
left_side_connectivity
])
mapping = OrderedDict()
mapping['front'] = front_indices
mapping['bonnet'] = bonnet_indices
mapping['windshield'] = windshield_indices
mapping['left_side'] = left_side_indices
ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
pcloud.points[ind], all_connectivity, mapping)
return new_pcloud, mapping
示例12: pose_lsp_14_to_pose_lsp_14
def pose_lsp_14_to_pose_lsp_14(pcloud):
r"""
Apply the lsp 14-point semantic labels.
The semantic labels applied are as follows:
- left_leg
- right_leg
- left_arm
- right_arm
- head
References
----------
.. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
"""
from menpo.shape import LabelledPointUndirectedGraph
n_expected_points = 14
validate_input(pcloud, n_expected_points)
left_leg_indices = np.arange(0, 3)
right_leg_indices = np.arange(3, 6)
left_arm_indices = np.arange(6, 9)
right_arm_indices = np.arange(9, 12)
head_indices = np.arange(12, 14)
left_leg_connectivity = connectivity_from_array(left_leg_indices)
right_leg_connectivity = connectivity_from_array(right_leg_indices)
left_arm_connectivity = connectivity_from_array(left_arm_indices)
right_arm_connectivity = connectivity_from_array(right_arm_indices)
head_connectivity = connectivity_from_array(head_indices)
all_connectivity = np.vstack([
left_leg_connectivity, right_leg_connectivity,
left_arm_connectivity, right_arm_connectivity,
head_connectivity
])
mapping = OrderedDict()
mapping['left_leg'] = left_leg_indices
mapping['right_leg'] = right_leg_indices
mapping['left_arm'] = left_arm_indices
mapping['right_arm'] = right_arm_indices
mapping['head'] = head_indices
new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
pcloud.points, all_connectivity, mapping)
return new_pcloud, mapping
示例13: car_streetscene_20_to_car_streetscene_view_6_14
def car_streetscene_20_to_car_streetscene_view_6_14(pcloud):
r"""
Apply the 14-point semantic labels of "view 6" from the MIT Street Scene
Car dataset (originally a 20-point markup).
The semantic labels applied are as follows:
- right_side
- rear_windshield
- trunk
- rear
References
----------
.. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
"""
from menpo.shape import LabelledPointUndirectedGraph
n_expected_points = 20
validate_input(pcloud, n_expected_points)
right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
rear_windshield_indices = np.array([4, 5, 7, 6])
trunk_indices = np.array([6, 7, 9, 8])
rear_indices = np.array([8, 9, 11, 10])
right_side_connectivity = connectivity_from_array(right_side_indices,
close_loop=True)
rear_windshield_connectivity = connectivity_from_array(
rear_windshield_indices, close_loop=True)
trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)
all_connectivity = np.vstack([
right_side_connectivity, rear_windshield_connectivity,
trunk_connectivity, rear_connectivity
])
mapping = OrderedDict()
mapping['right_side'] = right_side_indices
mapping['rear_windshield'] = rear_windshield_indices
mapping['trunk'] = trunk_indices
mapping['rear'] = rear_indices
ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
pcloud.points[ind], all_connectivity, mapping)
return new_pcloud, mapping
示例14: _parse_ljson_v2
def _parse_ljson_v2(lms_dict):
points = _ljson_parse_null_values(lms_dict['landmarks']['points'])
connectivity = lms_dict['landmarks'].get('connectivity')
if connectivity is None and len(lms_dict['labels']) == 0:
return PointCloud(points)
else:
labels_to_mask = OrderedDict() # masks into the pointcloud per label
n_points = points.shape[0]
for label in lms_dict['labels']:
mask = np.zeros(n_points, dtype=np.bool)
mask[label['mask']] = True
labels_to_mask[label['label']] = mask
# Note that we can pass connectivity as None here and the edges will be
# empty.
return LabelledPointUndirectedGraph.init_from_edges(
points, connectivity, labels_to_mask)
示例15: pcloud_and_lgroup_from_ranges
def pcloud_and_lgroup_from_ranges(pointcloud, labels_to_ranges):
"""
Label the given pointcloud according to the given ordered dictionary
of labels to ranges. This assumes that you can semantically label the group
by using ranges in to the existing points e.g ::
labels_to_ranges = {'jaw': (0, 17, False)}
The third element of the range tuple is whether the range is a closed loop
or not. For example, for an eye landmark this would be ``True``, as you
do want to create a closed loop for an eye.
Parameters
----------
pointcloud : :map:`PointCloud`
The pointcloud to apply semantic labels to.
labels_to_ranges : `ordereddict` {`str` -> (`int`, `int`, `bool`)}
Ordered dictionary of string labels to range tuples.
Returns
-------
new_pcloud : :map:`PointCloud`
New pointcloud with specific connectivity information applied.
mapping : `ordereddict` {`str` -> `int ndarray`}
For each label, the indices in to the pointcloud that belong to the
label.
"""
from menpo.shape import LabelledPointUndirectedGraph
mapping = OrderedDict()
all_connectivity = []
for label, tup in labels_to_ranges.items():
range_tuple = tup[:-1]
close_loop = tup[-1]
connectivity = connectivity_from_range(range_tuple,
close_loop=close_loop)
all_connectivity.append(connectivity)
mapping[label] = np.arange(*range_tuple)
all_connectivity = np.vstack(all_connectivity)
new_pcloud = LabelledPointUndirectedGraph.init_from_indices_mapping(
pointcloud.points, all_connectivity, mapping)
return new_pcloud, mapping