当前位置: 首页>>代码示例>>Python>>正文


Python io.import_image函数代码示例

本文整理汇总了Python中menpo.io.import_image函数的典型用法代码示例。如果您正苦于以下问题:Python import_image函数的具体用法?Python import_image怎么用?Python import_image使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了import_image函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: blue_peter

def blue_peter():
    import menpo.io as mio
    import h5it
    from menpo.visualize.image import glyph
    from menpo.feature import hog
    import matplotlib.pyplot as plt
    # Loading the pre-built HOG AAM
    import cPickle as pickle

    with open('/Users/pts08/hog_lfpw_aam.pkl', 'rb') as f:
        hog_aam = pickle.load(f)
    
    #hog_aam = h5it.load('/Users/pts08/sparse_hog.hdf5')
    print('Here is one I made earlier!')

    bp = mio.import_image('blue_peter.jpg')
    hog_blue_peter = hog(bp)

    plt.figure()

    plt.subplot(121)
    bp.view()
    plt.axis('off')
    plt.gcf().set_size_inches(11, 11)
    plt.title('RGB')

    plt.subplot(122)
    glyph(hog_blue_peter).view()
    plt.axis('off')
    plt.gcf().set_size_inches(11, 11)
    plt.title('HOG')

    return hog_aam
开发者ID:patricksnape,项目名称:acm_seminar_20_10_2014,代码行数:33,代码来源:seminar.py

示例2: image

    def image(self):
        if self._image is None:
            image = mio.import_image(self._image_path)
            image.crop_to_landmarks_proportion_inplace(0.5)
            self._image = image

        return self._image
开发者ID:jalabort,项目名称:alabortijcv2015,代码行数:7,代码来源:result.py

示例3: test_importing_I_no_normalise

def test_importing_I_no_normalise(is_file, mock_image):
    mock_image.return_value = PILImage.new('I', (10, 10))
    is_file.return_value = True

    im = mio.import_image('fake_image_being_mocked.jpg', normalise=False)
    assert im.shape == (10, 10)
    assert im.n_channels == 1
    assert im.pixels.dtype == np.int32
开发者ID:jacksoncsy,项目名称:menpo,代码行数:8,代码来源:io_import_test.py

示例4: test_importing_PIL_L_normalise

def test_importing_PIL_L_normalise(is_file, mock_image):
    mock_image.return_value = PILImage.new('L', (10, 10))
    is_file.return_value = True

    im = mio.import_image('fake_image_being_mocked.ppm', normalise=True)
    assert im.shape == (10, 10)
    assert im.n_channels == 1
    assert im.pixels.dtype == np.float
开发者ID:dkollias,项目名称:menpo,代码行数:8,代码来源:io_import_test.py

示例5: test_importing_PIL_P_no_normalize

def test_importing_PIL_P_no_normalize(is_file, mock_image):
    mock_image.return_value = PILImage.new('P', (10, 10))
    is_file.return_value = True

    im = mio.import_image('fake_image_being_mocked.ppm', normalize=False)
    assert im.shape == (10, 10)
    assert im.n_channels == 3
    assert im.pixels.dtype == np.uint8
开发者ID:dvdm,项目名称:menpo,代码行数:8,代码来源:io_import_test.py

示例6: test_importing_imageio_RGB_no_normalise

def test_importing_imageio_RGB_no_normalise(is_file, mock_image):

    mock_image.return_value = np.zeros([10, 10, 3], dtype=np.uint8)
    is_file.return_value = True

    im = mio.import_image('fake_image_being_mocked.jpg', normalise=False)
    assert im.shape == (10, 10)
    assert im.n_channels == 3
    assert im.pixels.dtype == np.uint8
开发者ID:dkollias,项目名称:menpo,代码行数:9,代码来源:io_import_test.py

示例7: image

    def image(self):
        if self._image is None:
            image_ = mio.import_image(self._image_path)
            image = Image(np.rollaxis(image_.pixels, -1))
            image.landmarks = image_.landmarks
            image.crop_to_landmarks_proportion_inplace(0.5)
            self._image = image

        return self._image
开发者ID:jalabort,项目名称:ijcv-2014-aam,代码行数:9,代码来源:result.py

示例8: ply_importer

def ply_importer(filepath, asset=None, texture_resolver=None, **kwargs):
    """Allows importing Wavefront (OBJ) files.

    Uses VTK.

    Parameters
    ----------
    asset : `object`, optional
        An optional asset that may help with loading. This is unused for this
        implementation.
    texture_resolver : `callable`, optional
        A callable that recieves the mesh filepath and returns a single
        path to the texture to load.
    \**kwargs : `dict`, optional
        Any other keyword arguments.

    Returns
    -------
    shape : :map:`PointCloud` or subclass
        The correct shape for the given inputs.
    """
    import vtk
    from vtk.util.numpy_support import vtk_to_numpy

    ply_importer = vtk.vtkPLYReader()
    ply_importer.SetFileName(str(filepath))

    ply_importer.Update()

    # Get the output
    polydata = ply_importer.GetOutput()

    # We must have point data!
    points = vtk_to_numpy(polydata.GetPoints().GetData()).astype(np.float)

    trilist = np.require(vtk_ensure_trilist(polydata), requirements=['C'])

    texture = None
    if texture_resolver is not None:
        texture_path = texture_resolver(filepath)
        if texture_path is not None and texture_path.exists():
            texture = mio.import_image(texture_path)

    tcoords = None
    if texture is not None:
        try:
            tcoords = vtk_to_numpy(polydata.GetPointData().GetTCoords())
        except Exception:
            pass

        if isinstance(tcoords, np.ndarray) and tcoords.size == 0:
            tcoords = None

    colour_per_vertex = None
    return _construct_shape_type(points, trilist, tcoords, texture,
                                 colour_per_vertex)
开发者ID:HaoyangWang,项目名称:menpo3d,代码行数:56,代码来源:base.py

示例9: test_importing_PIL_RGBA_normalize

def test_importing_PIL_RGBA_normalize(is_file, mock_image):
    from menpo.image import MaskedImage

    mock_image.return_value = PILImage.new('RGBA', (10, 10))
    is_file.return_value = True

    im = mio.import_image('fake_image_being_mocked.ppm', normalize=True)
    assert im.shape == (10, 10)
    assert im.n_channels == 3
    assert im.pixels.dtype == np.float
    assert type(im) == MaskedImage
开发者ID:dvdm,项目名称:menpo,代码行数:11,代码来源:io_import_test.py

示例10: test_importing_PIL_1_no_normalize

def test_importing_PIL_1_no_normalize(is_file, mock_image):
    from menpo.image import BooleanImage

    mock_image.return_value = PILImage.new('1', (10, 10))
    is_file.return_value = True

    im = mio.import_image('fake_image_being_mocked.ppm', normalize=False)
    assert im.shape == (10, 10)
    assert im.n_channels == 1
    assert im.pixels.dtype == np.bool
    assert type(im) == BooleanImage
开发者ID:dvdm,项目名称:menpo,代码行数:11,代码来源:io_import_test.py

示例11: getImageFromFile

 def getImageFromFile(path):
 
     def load_image(i):
         i = i.crop_to_landmarks_proportion(0.5)
         if i.n_channels == 3:
             i = i.as_greyscale()
         labeller(i, 'PTS', face_ibug_68_to_face_ibug_68)
         return i
     
     image_path = Path(path)
     i =  load_image(mio.import_image(image_path))
     return i
开发者ID:Deathstroke7,项目名称:lipRead,代码行数:12,代码来源:captureImage.py

示例12: test_register_image_importer

def test_register_image_importer(is_file):
    from menpo.image import Image
    image = Image.init_blank((10, 10))

    def foo_importer(filepath, **kwargs):
        return image

    is_file.return_value = True

    with patch.dict(mio.input.extensions.image_types, {}, clear=True):
        mio.register_image_importer('.foo', foo_importer)
        new_image = mio.import_image('fake.foo')
    assert image is new_image
开发者ID:dvdm,项目名称:menpo,代码行数:13,代码来源:io_import_test.py

示例13: test_importing_imageio_GIF_no_normalise

def test_importing_imageio_GIF_no_normalise(is_file, mock_image):
    mock_image.return_value.get_data.return_value = np.ones((10, 10, 3),
                                                            dtype=np.uint8)
    mock_image.return_value.get_length.return_value = 2
    is_file.return_value = True

    ll = mio.import_image('fake_image_being_mocked.gif', normalise=False)
    assert len(ll) == 2

    im = ll[0]
    assert im.shape == (10, 10)
    assert im.n_channels == 3
    assert im.pixels.dtype == np.uint8
开发者ID:dkollias,项目名称:menpo,代码行数:13,代码来源:io_import_test.py

示例14: load_images

def load_images(list_frames, frames_path, path_land, clip_name, max_images=None,
                training_images=None, crop_reading=0.3, pix_thres=330, feat=None):
    """
    Read images from the clips that are processed. The landmarks can be a different folder with the extension of pts and
    are searched as such.
    :param list_frames:         List of images that will be read and loaded.
    :param frames_path:         Path to the folder of images.
    :param path_land:           Path of the respective landmarks.
    :param clip_name:           The name of the clip being processed.
    :param max_images:          (optional) Max images that will be loaded from this clip.
    :param training_images:     (optional) List of images to append the new ones.
    :param crop_reading:        (optional) Amount of cropping the image around the landmarks.
    :param pix_thres:           (optional) If the cropped image has a dimension bigger than this, it gets cropped to this diagonal dimension.
    :param feat:                (optional) Features to be applied to the images before inserting them to the list.
    :return:                    List of menpo images.
    """
    from random import shuffle
    if not check_path_and_landmarks(frames_path, clip_name, path_land):
        return []
    if feat is None:
        feat = no_op
    if training_images is None:
        training_images = []
    shuffle(list_frames)            # shuffle the list to ensure random ones are chosen
    if max_images is None:
        max_images = len(list_frames)
    elif max_images < 0:
        print('Warning: The images cannot be negative, loading the whole list instead.')
        max_images = len(list_frames)
    cnt = 0  # counter for images appended to the list
    for frame_name in list_frames:
        try:
            im = mio.import_image(frames_path + frame_name, normalise=True)
        except ValueError:                                      # in case the extension is unknown (by menpo)
            print('Ignoring the \'image\' {}.'.format(frame_name))
            continue
        res = glob.glob(path_land + clip_name + sep + im.path.stem + '*.pts')
        if len(res) == 0:                       # if the image does not have any existing landmarks, ignore it
            continue
        elif len(res) > 1:
            #_r = randint(0,len(res)-1); #just for debugging reasons in different variable
            #ln = mio.import_landmark_file(res[_r]) # in case there are plenty of landmarks for the image, load random ones
            print('The image {} has more than one landmarks, for one person, loading only the first ones.'.format(frame_name))
        ln = mio.import_landmark_file(res[0])
        im.landmarks['PTS'] = ln
        im = crop_rescale_img(im, crop_reading=crop_reading, pix_thres=pix_thres)
        training_images.append(feat(im))
        cnt += 1
        if cnt >= max_images:
            break  # the limit of images (appended to the list) is reached
    return training_images
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:51,代码来源:pipeline_aux.py

示例15: load_image

def load_image(path, reference_shape, is_training=False, group='PTS',
               mirror_image=False):
    """Load an annotated image.

    In the directory of the provided image file, there
    should exist a landmark file (.pts) with the same
    basename as the image file.

    Args:
      path: a path containing an image file.
      reference_shape: a numpy array [num_landmarks, 2]
      is_training: whether in training mode or not.
      group: landmark group containing the grounth truth landmarks.
      mirror_image: flips horizontally the image's pixels and landmarks.
    Returns:
      pixels: a numpy array [width, height, 3].
      estimate: an initial estimate a numpy array [68, 2].
      gt_truth: the ground truth landmarks, a numpy array [68, 2].
    """
    im = mio.import_image(path)
    bb_root = im.path.parent.relative_to(im.path.parent.parent.parent)
    if 'set' not in str(bb_root):
        bb_root = im.path.parent.relative_to(im.path.parent.parent)

    im.landmarks['bb'] = mio.import_landmark_file(str(Path('bbs') / bb_root / (
        im.path.stem + '.pts')))

    im = im.crop_to_landmarks_proportion(0.3, group='bb')
    reference_shape = PointCloud(reference_shape)

    bb = im.landmarks['bb'].lms.bounding_box()

    im.landmarks['__initial'] = align_shape_with_bounding_box(reference_shape,
                                                              bb)
    im = im.rescale_to_pointcloud(reference_shape, group='__initial')

    if mirror_image:
        im = utils.mirror_image(im)

    lms = im.landmarks[group].lms
    initial = im.landmarks['__initial'].lms

    # if the image is greyscale then convert to rgb.
    pixels = grey_to_rgb(im).pixels.transpose(1, 2, 0)

    gt_truth = lms.points.astype(np.float32)
    estimate = initial.points.astype(np.float32)
    return pixels.astype(np.float32).copy(), gt_truth, estimate
开发者ID:trigeorgis,项目名称:mdm,代码行数:48,代码来源:data_provider.py


注:本文中的menpo.io.import_image函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。