本文整理汇总了Python中medpy.core.Logger.getInstance方法的典型用法代码示例。如果您正苦于以下问题:Python Logger.getInstance方法的具体用法?Python Logger.getInstance怎么用?Python Logger.getInstance使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类medpy.core.Logger
的用法示例。
在下文中一共展示了Logger.getInstance方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
# parse cmd arguments
parser = getParser()
parser.parse_args()
args = getArguments(parser)
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# load input image using nibabel
logger.info('Loading image {}...'.format(args.input))
image_labels_data, _ = load(args.image)
# load mask image
logger.info('Loading mask {}...'.format(args.mask))
image_mask_data, image_mask_data_header = load(args.mask)
# check if output image exists
if not args.force:
if os.path.exists(args.output):
logger.warning('The output image {} already exists. Skipping this image.'.format(args.output))
# create a mask from the label image
logger.info('Reducing the label image...')
image_reduced_data = fit_labels_to_mask(image_labels_data, image_mask_data)
# save resulting mask
logger.info('Saving resulting mask as {} in the same format as input mask, only with data-type int8...'.format(args.output))
image_reduced_data = image_reduced_data.astype(numpy.bool, copy=False) # bool sadly not recognized
save(image_reduced_data, args.output, image_mask_data_header, args.force)
logger.info('Successfully terminated.')
示例2: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
args = getArguments(getParser())
# prepare logger
logger = Logger.getInstance()
if args.debug:
logger.setLevel(logging.DEBUG)
elif args.verbose:
logger.setLevel(logging.INFO)
# check if output image exists
if not args.force:
if os.path.exists(args.output):
logger.warning("The output image {} already exists. Exiting.".format(args.output))
exit(-1)
# load input image
input_data, input_header = load(args.input)
logger.debug("Old number of regions={}.".format(len(scipy.unique(input_data))))
# cut and relabel along the required dimension
logger.info("Cutting and relabeling...")
dimensions = range(input_data.ndim)
del dimensions[args.dimension]
__split_along(input_data, dimensions)
logger.debug("New number of regions={}.".format(len(scipy.unique(input_data))))
# save result contour volume
save(input_data, args.output, input_header, args.force)
logger.info("Successfully terminated.")
示例3: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
args = getArguments(getParser())
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# load input image
data_input, header_input = load(args.input)
# transform to uin8
data_input = data_input.astype(scipy.uint8)
# reduce to 3D, if larger dimensionality
if data_input.ndim > 3:
for _ in range(data_input.ndim - 3): data_input = data_input[...,0]
# iter over slices (2D) until first with content is detected
for plane in data_input:
if scipy.any(plane):
# set pixel spacing
spacing = list(header.get_pixel_spacing(header_input))
spacing = spacing[1:3]
__update_header_from_array_nibabel(header_input, plane)
header.set_pixel_spacing(header_input, spacing)
# save image
save(plane, args.output, header_input, args.force)
break
logger.info("Successfully terminated.")
示例4: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
args = getArguments(getParser())
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# load input images
input_data, input_header = load(args.input)
original_data, _ = load(args.original)
logger.debug('Old shape={}.'.format(input_data.shape))
# compute position
logger.info('Computing positon and pad volume...')
position = __parse_contour_list(args.contours, input_data)
# pad volume
output_data = scipy.zeros(original_data.shape, input_data.dtype)
output_data[position] = input_data
logger.debug('New shape={}.'.format(input_data.shape))
# save result contour volume
save(output_data, args.output, input_header, args.force)
logger.info("Successfully terminated.")
示例5: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
# parse cmd arguments
parser = getParser()
parser.parse_args()
args = getArguments(parser)
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# check if output image exists (will also be performed before saving, but as the smoothing might be very time intensity, a initial check can save frustration)
if not args.force:
if os.path.exists(args.output):
raise parser.error('The output image {} already exists.'.format(args.output))
# loading image
data_input, header_input = load(args.input)
# apply the watershed
logger.info('Applying anisotropic diffusion with settings: niter={} / kappa={} / gamma={}...'.format(args.iterations, args.kappa, args.gamma))
data_output = anisotropic_diffusion(data_input, args.iterations, args.kappa, args.gamma, get_pixel_spacing(header_input))
# save file
save(data_output, args.output, header_input, args.force)
logger.info('Successfully terminated.')
示例6: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
args = getArguments(getParser())
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# constants
colours = {'i': 10, 'o': 11}
# load volumes
marker_data, _ = load(args.marker)
contour_data, _ = load(args.contour)
# perform check
contour_data = contour_data == colours[args.type]
marker_data_fg = marker_data == 1
marker_data_bg = marker_data == 2
if scipy.logical_and(contour_data, marker_data_fg).any():
logger.warning('Intersection between {} and {} (type {}) in foreground.'.format(args.marker, args.contour, args.type))
elif scipy.logical_and(contour_data, marker_data_bg).any():
logger.warning('Intersection between {} and {} (type {}) in background.'.format(args.marker, args.contour, args.type))
else:
print "No intersection."
示例7: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
# parse cmd arguments
parser = getParser()
parser.parse_args()
args = getArguments(parser)
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# check if output image exists (will also be performed before saving, but as the gradient might be time intensity, a initial check can save frustration)
if not args.force:
if os.path.exists(args.output):
raise ArgumentError('The output image {} already exists.'.format(args.output))
# loading image
data_input, header_input = load(args.input)
logger.debug('Input array: dtype={}, shape={}'.format(data_input.dtype, data_input.shape))
# execute the gradient map filter
logger.info('Applying gradient map filter...')
data_output = filter.gradient_magnitude(data_input, header.get_pixel_spacing(header_input))
logger.debug('Resulting array: dtype={}, shape={}'.format(data_output.dtype, data_output.shape))
# save image
save(data_output, args.output, header_input, args.force)
logger.info('Successfully terminated.')
示例8: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
args = getArguments(getParser())
# prepare logger
logger = Logger.getInstance()
if args.debug:
logger.setLevel(logging.DEBUG)
elif args.verbose:
logger.setLevel(logging.INFO)
# collect slice-wise results and compute average
results_i, results_o = parseImageResults(args.score)
results_i = splitResults(results_i)
results_o = splitResults(results_o)
# print results
if args.csv:
print "Inner contours"
csvPrintResults(results_i)
print "Outer contours"
csvPrintResults(results_o)
else:
print "########## Inner contours ##########"
prettyPrintResults(results_i)
print "####################################"
print
print "########## Outer contours ##########"
prettyPrintResults(results_o)
print "####################################"
示例9: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
# parse cmd arguments
parser = getParser()
parser.parse_args()
args = getArguments(parser)
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# check if output image already exists
if not args.force:
if os.path.exists(args.output):
logger.warning('The output image {} already exists. Exiting.'.format(args.output))
exit(-1)
# load input image
image_smoothed_data, image_header = load(args.input)
# apply additional hole closing step
logger.info('Closing holes...')
def fun_holes(arr):
return scipy.ndimage.morphology.binary_fill_holes(arr)
xd_iterator(image_smoothed_data, (1, 2), fun_holes)
# perform opening resp. closing
# in 3D case: size 1 = 6-connectedness, 2 = 12-connectedness, 3 = 18-connectedness, etc.
if 'erosion' == args.type:
logger.info('Applying erosion...')
def fun(arr):
if 0 == args.iterations: return arr
footprint = scipy.ndimage.morphology.generate_binary_structure(arr.ndim, args.size)
return scipy.ndimage.morphology.binary_erosion(arr, footprint, iterations=args.iterations)
elif 'dilation' == args.type:
logger.info('Applying dilation...')
def fun(arr):
if 0 == args.iterations: return arr
footprint = scipy.ndimage.morphology.generate_binary_structure(arr.ndim, args.size)
return scipy.ndimage.morphology.binary_dilation(arr, footprint, iterations=args.iterations)
elif 'opening' == args.type:
logger.info('Applying opening...')
def fun(arr):
if 0 == args.iterations: return arr
footprint = scipy.ndimage.morphology.generate_binary_structure(arr.ndim, args.size)
return scipy.ndimage.morphology.binary_opening(arr, footprint, iterations=args.iterations)
else: # closing
logger.info('Applying closing...')
def fun(arr):
if 0 == args.iterations: return arr
footprint = scipy.ndimage.morphology.generate_binary_structure(arr.ndim, args.size)
return scipy.ndimage.morphology.binary_closing(arr, footprint, iterations=args.iterations)
# iterate over slices and apply selected operation
xd_iterator(image_smoothed_data, (1, 2), fun)
# save resulting mas
save(image_smoothed_data, args.output, image_header, args.force)
logger.info('Successfully terminated.')
示例10: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
# parse cmd arguments
parser = getParser()
parser.parse_args()
args = getArguments(parser)
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# laod input image
data_input, header_input = load(args.input)
# # check if output image exists
# if not args.force:
# if os.path.exists(image_gradient_name):
# logger.warning('The output image {} already exists. Skipping this step.'.format(image_gradient_name))
# continue
# prepare result image
data_output = scipy.zeros(data_input.shape, dtype=scipy.float32)
# apply the gradient magnitude filter
logger.info('Computing the gradient magnitude with Prewitt operator...')
generic_gradient_magnitude(data_input, prewitt, output=data_output) # alternative to prewitt is sobel
# save resulting mask
save(data_output, args.output, header_input, args.force)
logger.info('Successfully terminated.')
示例11: zoom
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def zoom(image, factor, dimension, hdr = False, order = 3):
"""
Zooms the provided image by the supplied factor in the supplied dimension.
The factor is an integer determining how many slices should be put between each
existing pair.
If an image header (hdr) is supplied, its voxel spacing gets updated.
Returns the image and the updated header or false.
"""
# check if supplied dimension is valid
if dimension >= image.ndim:
raise argparse.ArgumentError('The supplied zoom-dimension {} exceeds the image dimensionality of 0 to {}.'.format(dimension, image.ndim - 1))
# get logger
logger = Logger.getInstance()
logger.debug('Old shape = {}.'.format(image.shape))
# perform the zoom
zoom = [1] * image.ndim
zoom[dimension] = (image.shape[dimension] + (image.shape[dimension] - 1) * factor) / float(image.shape[dimension])
logger.debug('Reshaping with = {}.'.format(zoom))
image = interpolation.zoom(image, zoom, order=order)
logger.debug('New shape = {}.'.format(image.shape))
if hdr:
new_spacing = list(header.get_pixel_spacing(hdr))
new_spacing[dimension] = new_spacing[dimension] / float(factor + 1)
logger.debug('Setting pixel spacing from {} to {}....'.format(header.get_pixel_spacing(hdr), new_spacing))
header.set_pixel_spacing(hdr, tuple(new_spacing))
return image, hdr
示例12: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
# parse cmd arguments
parser = getParser()
parser.parse_args()
args = getArguments(parser)
# prepare logger
logger = Logger.getInstance()
if args.debug:
logger.setLevel(logging.DEBUG)
elif args.verbose:
logger.setLevel(logging.INFO)
# check if output image exists (will also be performed before saving, but as the watershed might be very time intensity, a initial check can save frustration)
if not args.force:
if os.path.exists(args.output):
raise ArgumentError("The output image {} already exists.".format(args.output))
# loading image
data_input, header_input = load(args.input)
# apply the watershed
logger.info("Watershedding with settings: thr={} / level={}...".format(args.threshold, args.level))
data_output = watershed(data_input, get_pixel_spacing(header_input), args.threshold, args.level)
# save file
save(data_output, args.output, header_input, args.force)
logger.info("Successfully terminated.")
示例13: __init__
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def __init__(self, image_labels, image_original):
"""
Computes a number of statistics for the labels of a label image.
These include beside others:
1. a histogram of the sizes of the regions
2. a histogram of the sphericity (not roundness) of the regions
3. a histogram of how the intensity distribution in each region differs
from a Gaussian distribution
@param image_lables: The label image for which the statistics should be
computed as a numpy array
@param image_original: The original image for which the label image was created.
"""
if image_labels.shape != image_original.shape:
raise ValueError('The input images must be of the same shape.')
if not 3 == len(image_labels.shape):
raise ValueError('Currently this class is only working with 3D images.')
# prepare logger
self._logger = Logger.getInstance()
self._image_labels = image_labels
self._image_original = image_original
self._compute()
示例14: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
# parse cmd arguments
parser = getParser()
parser.parse_args()
args = getArguments(parser)
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# write header line
print('image;labels\n')
# iterate over input images
for image in args.images:
# get and prepare image data
logger.info('Processing image {}...'.format(image))
image_data, _ = load(image)
# count number of labels and flag a warning if they reach the ushort border
count = len(numpy.unique(image_data))
# count number of labels and write
print('{};{}\n'.format(image.split('/')[-1], count))
sys.stdout.flush()
logger.info('Successfully terminated.')
示例15: main
# 需要导入模块: from medpy.core import Logger [as 别名]
# 或者: from medpy.core.Logger import getInstance [as 别名]
def main():
args = getArguments(getParser())
# prepare logger
logger = Logger.getInstance()
if args.debug: logger.setLevel(logging.DEBUG)
elif args.verbose: logger.setLevel(logging.INFO)
# load input image
input_data, input_header = load(args.input)
logger.debug('Old shape={}.'.format(input_data.shape))
# compute cut
logger.info('Computing cut and cropping volume...')
cut = __parse_contour_list(args.contours, input_data)
# crop volume
input_data = input_data[cut]
logger.debug('New shape={}.'.format(input_data.shape))
# save result contour volume
save(input_data, args.output, input_header, args.force)
logger.info("Successfully terminated.")