本文整理汇总了Python中mayavi.mlab.figure函数的典型用法代码示例。如果您正苦于以下问题:Python figure函数的具体用法?Python figure怎么用?Python figure使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了figure函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testVisually
def testVisually(self):
'''blocks selected visually.'''
# if self.comm.rank == 0:
g2z,zvec = PETSc.Scatter().toZero(self.bnd.gindBlockWBand)
g2z.scatter(self.bnd.gindBlockWBand,zvec, PETSc.InsertMode.INSERT)
x = self.bnd.BlockSub2CenterCarWithoutBand(\
self.bnd.BlockInd2SubWithoutBand(zvec.getArray()) )
lx = self.bnd.BlockSub2CenterCarWithoutBand(\
self.bnd.BlockInd2SubWithoutBand(self.bnd.gindBlockWBand.getArray()))
try:
try:
from mayavi import mlab
except ImportError:
from enthought.mayavi import mlab
if self.comm.rank == 0:
mlab.figure()
mlab.points3d(x[:,0],x[:,1],x[:,2])
mlab.figure()
mlab.points3d(lx[:,0],lx[:,1],lx[:,2])
mlab.show()
#fig.add(pts1)
#fig.add(pts2)
except ImportError:
import pylab as pl
from mpl_toolkits.mplot3d import Axes3D #@UnusedImport
fig = pl.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter3D(x[:,0],x[:,1],x[:,2],c='blue',marker='o')
ax.scatter3D(lx[:,0],lx[:,1],lx[:,2],c='red',marker='D')
pl.savefig('testVis{0}.png'.format(self.comm.rank))
pl.show()
示例2: show_volume
def show_volume(self, bbox):
"""
show the volume with the given bounding box
"""
# load the data
with h5py.File(self.h5fn, 'r') as f:
seg1 = f["segmentation"]["labels"][bbox[2]:bbox[5],bbox[1]:bbox[4],bbox[0]:bbox[3]]
raw = f["raw"]["volume"][bbox[2]:bbox[5],bbox[1]:bbox[4],bbox[0]:bbox[3]]
print "Drawing volume"
t0 = time.time()
#draw everything
fig1 = mlab.figure(1, size=(500,450))
mlab.clf(fig1)
visCell.drawImagePlane(fig1, raw, 'gist_ncar')
visCell.drawVolumeWithoutReferenceCell(fig1, seg1, np.array((-1,)), (0,0,1),0.5)
with h5py.File(self.h5fn, 'r') as f:
visCell.drawLabels(fig1, f, seg1, bbox)
fig2 = mlab.figure(2, size=(500,450))
mlab.clf(fig2)
visCell.draw2DView(fig2, raw[20:-20,:,:], seg1[20:-20,:,:], -1)
t = time.time() - t0
print "Time for drawing:",t
示例3: showDsweep
def showDsweep():
k_s_sweep = [10**(x-5) for x in range(10)]
sl_div_diam_sweep = [5.0*(x+1)/1000 for x in range(20)]
vol_ratio_sweep = [5.0*(x+1)/100 for x in range(10)]
Dmsd = numpy.load(data_dir + "/D_numpy.npy")
kDa = 1.660538921e-30;
mass = 40.0*kDa;
viscosity = 8.9e-4;
diameter = 5e-9;
T = 300.0;
Dbase = k_b*T/(3.0*numpy.pi*viscosity*diameter);
Dmsd = Dmsd/Dbase
mlab.figure(1, size=(800, 800), fgcolor=(1, 1, 1),
bgcolor=(0.5, 0.5, 0.5))
mlab.clf()
contours = numpy.arange(0.01,2,0.2).tolist()
obj = mlab.contour3d(Dmsd,contours=contours,transparent=True,vmin=contours[0],vmax=contours[-1])
outline = mlab.outline(color=(.7, .7, .7),extent=(0,10,0,20,0,10))
axes = mlab.axes(outline, color=(.7, .7, .7),
nb_labels = 5,
ranges=(k_s_sweep[0], k_s_sweep[-1], sl_div_diam_sweep[0], sl_div_diam_sweep[-1], vol_ratio_sweep[0], vol_ratio_sweep[-1]),
xlabel='spring stiffness',
ylabel='step length',
zlabel='volume ratio')
mlab.colorbar(obj,title='D',nb_labels=5)
mlab.show()
示例4: zoncaview
def zoncaview(m):
"""
m is a healpix sky map, such as provided by WMAP or Planck.
"""
nside = hp.npix2nside(len(m))
vmin = -1e3; vmax = 1e3
# Set up some grids:
xsize = ysize = 1000
theta = np.linspace(np.pi, 0, ysize)
phi = np.linspace(-np.pi, np.pi, xsize)
longitude = np.radians(np.linspace(-180, 180, xsize))
latitude = np.radians(np.linspace(-90, 90, ysize))
# Project the map to a rectangular matrix xsize x ysize:
PHI, THETA = np.meshgrid(phi, theta)
grid_pix = hp.ang2pix(nside, THETA, PHI)
grid_map = m[grid_pix]
# Create a sphere:
r = 0.3
x = r*np.sin(THETA)*np.cos(PHI)
y = r*np.sin(THETA)*np.sin(PHI)
z = r*np.cos(THETA)
# The figure:
mlab.figure(1, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(400, 300))
mlab.clf()
mlab.mesh(x, y, z, scalars=grid_map, colormap="jet", vmin=vmin, vmax=vmax)
mlab.draw()
return
示例5: m2screenshot
def m2screenshot(mayavi_fig=None, mpl_axes=None, autocrop=True):
""" Capture a screeshot of the Mayavi figure and display it in the
matplotlib axes.
"""
import pylab as pl
# Late import to avoid triggering wx imports before needed.
try:
from mayavi import mlab
except ImportError:
# Try out old install of Mayavi, with namespace packages
from enthought.mayavi import mlab
if mayavi_fig is None:
mayavi_fig = mlab.gcf()
else:
mlab.figure(mayavi_fig)
if mpl_axes is not None:
pl.axes(mpl_axes)
filename = tempfile.mktemp('.png')
mlab.savefig(filename, figure=mayavi_fig)
image3d = pl.imread(filename)
if autocrop:
bg_color = mayavi_fig.scene.background
image3d = autocrop_img(image3d, bg_color)
pl.imshow(image3d)
pl.axis('off')
os.unlink(filename)
示例6: test_surface_normals
def test_surface_normals(plot=False, skip_asserts=False,
write_reference=False):
"Test the surface normals of a horseshoe mesh"
sim = openmodes.Simulation()
mesh = sim.load_mesh(osp.join(mesh_dir, 'horseshoe_rect.msh'))
part = sim.place_part(mesh)
basis = sim.basis_container[part]
r, rho = basis.integration_points(mesh.nodes, triangle_centres)
normals = mesh.surface_normals
r = r.reshape((-1, 3))
if write_reference:
write_2d_real(osp.join(reference_dir, 'surface_r.txt'), r)
write_2d_real(osp.join(reference_dir, 'surface_normals.txt'), normals)
r_ref = read_2d_real(osp.join(reference_dir, 'surface_r.txt'))
normals_ref = read_2d_real(osp.join(reference_dir, 'surface_normals.txt'))
if not skip_asserts:
assert_allclose(r, r_ref)
assert_allclose(normals, normals_ref)
if plot:
from mayavi import mlab
mlab.figure()
mlab.quiver3d(r[:, 0], r[:, 1], r[:, 2],
normals[:, 0], normals[:, 1], normals[:, 2],
mode='cone')
mlab.view(distance='auto')
mlab.show()
示例7: plot3D
def plot3D(name, X, Y, Z, zlabel):
"""
Plots a 3d surface plot of Z using the mayavi mlab.mesh function.
Parameters
----------
name: string
The name of the figure.
X: 2d ndarray
The x-axis data.
Y: 2d ndarray
The y-axis data.
Z: 2d nd array
The z-axis data.
zlabel: The title that appears on the z-axis.
"""
mlab.figure(name)
mlab.clf()
plotData = mlab.mesh(X/(np.max(X) - np.min(X)),
Y/(np.max(Y) - np.min(Y)),
Z/(np.max(Z) - np.min(Z)))
mlab.outline(plotData)
mlab.axes(plotData, ranges=[np.min(X), np.max(X),
np.min(Y), np.max(Y),
np.min(Z), np.max(Z)])
mlab.xlabel('Space ($x$)')
mlab.ylabel('Time ($t$)')
mlab.zlabel(zlabel)
示例8: Main
def Main(outputFolder, isData, normalized = True):
assert isinstance(outputFolder, str)
min, max = 0., 1.
if os.path.splitext(args.file)[1] == '.arff':
datasets, targets, targetMap = loadFromArff(args.file)
elif os.path.splitext(args.file)[1] == '.npy':
datasets = numpy.load(args.file)
min = -1.
else:
assert False
datasets = (lambda x : histogramEqualization(x, min=min, max=max) if normalized else x)(datasets)
if normalized : assert (datasets.min(), datasets.max()) == (min, max)
if not os.path.isdir("%s/Pictures" % outputFolder):
os.makedirs("%s/Pictures" % outputFolder)
global listIndex
if listIndex is None or (len(listIndex) >= len(datasets)):
listIndex = xrange(len(datasets))
for index in listIndex:
assert 0 <= index < len(datasets)
mlab.figure("Index : %d" % index, bgcolor=(1,1,1))
showArray(datasets[index], isData)
mlab.savefig("%s/Pictures/Index_%d.png" % (outputFolder, index))
if isData:
saveData('%s/Pictures/%s_Index_%d.txt' % (outputFolder, targetMap.reverse_mapping[targets[index]], index), datasets[index])
else:
saveData('%s/Pictures/Index_%d.txt' % (outputFolder, index), datasets[index])
mlab.close()
示例9: short_branches
def short_branches():
"""
Visualization of short branches of the skeleton.
"""
data1_sk = glob.glob('/backup/yuliya/vsi05/skeletons_largdom/*.h5')
data1_sk.sort()
for i,j, k in zip(d[1][37:47], data1_sk[46:56], ell[1][37:47]):
g = nx.read_gpickle(i)
dat = tb.openFile(j)
skel = np.copy(dat.root.skel)
bra = np.copy(dat.root.branches)
mask = np.zeros_like(skel)
dat.close()
length = nx.get_edge_attributes(g, 'length')
number = nx.get_edge_attributes(g, 'number')
num_dict = {}
for m in number:
for v in number[m]:
num_dict.setdefault(v, []).append(m)
find_br = ndimage.find_objects(bra)
for l in list(length.keys()):
if length[l]<0.5*k: #Criteria
for b in number[l]:
mask[find_br[b-1]] = bra[find_br[b-1]]==b
mlab.figure(bgcolor=(1,1,1), size=(1200,1200))
mlab.contour3d(skel, colormap='hot')
mlab.contour3d(mask)
mlab.savefig('/backup/yuliya/vsi05/skeletons/short_bran/'+ i[42:-10] + '.png')
mlab.close()
示例10: plot_matrix
def plot_matrix(connectmat_file, centers_file, threshold_pct=5, weight_edges=False,
node_scale_factor=2, edge_radius=.5, resolution=8, name_scale_factor=1,
names_file=None, node_indiv_colors=[], highlight_nodes=[], fliplr=False):
"""
Given a connectivity matrix and a (x,y,z) centers file for each region, plot the 3D network
"""
matrix = core.file_reader(connectmat_file)
nodes = core.file_reader(centers_file)
if names_file:
names = core.file_reader(names_file,1)
num_nodes = len(nodes)
edge_thresh_pct = threshold_pct / 100.0
matrix_flat = np.array(matrix).flatten()
edge_thresh = np.sort(matrix_flat)[len(matrix_flat)-int(len(matrix_flat)*edge_thresh_pct)]
matrix = core.file_reader(connectmat_file)
ma = np.array(matrix)
thresh = scipy.stats.scoreatpercentile(ma.ravel(),100-threshold_pct)
ma_thresh = ma*(ma > thresh)
if highlight_nodes:
nr = ma.shape[0]
subset_mat = np.zeros((nr, nr))
for i in highlight_nodes:
subset_mat[i,:] = 1
subset_mat[:,i] = 1
ma_thresh = ma_thresh * subset_mat
if fliplr:
new_nodes = []
for node in nodes:
new_nodes.append([45-node[0],node[1],node[2]]) # HACK
nodes = new_nodes
mlab.figure(bgcolor=(1, 1, 1), size=(400, 400))
for count,(x,y,z) in enumerate(nodes):
if node_indiv_colors:
mlab.points3d(x,y,z, color=colors[node_indiv_colors[count]], scale_factor=node_scale_factor, resolution=resolution)
else:
mlab.points3d(x,y,z, color=(0,1,0), scale_factor=node_scale_factor, resolution=resolution)
if names_file:
width = .025*name_scale_factor*len(names[count])
print width
print names[count]
mlab.text(x, y,names[count], z=z,width=.025*len(names[count]),color=(0,0,0))
for i in range(num_nodes-1):
x0,y0,z0 = nodes[i]
for j in range(i+1, num_nodes):
#if matrix[i][j] > edge_thresh:
if ma_thresh[i][j] > edge_thresh:
x1,y1,z1 = nodes[j]
if weight_edges:
mlab.plot3d([x0,x1], [y0,y1], [z0,z1],
tube_radius=matrix[i][j]/matrix_flat.max(),
color=(1,1,1))
else:
mlab.plot3d([x0,x1], [y0,y1], [z0,z1],
tube_radius=edge_radius,
color=(1,1,1))
示例11: test_normals_new5
def test_normals_new5 ():
#pts1 = clouds.downsample(pts1, 0.02).astype('float64')
# pts1 = np.array([[0.,0.,0.], [0.,0.5,0.], [0.,1.,0.], [1.,0.,0.0], [1.,0.5,0.0], [1.,1.,0.25]])
# pts2 = np.array([[0.,0.,0.], [0.,0.5,0.], [0.,1.,0.], [1.,0.,1.], [1.,0.5,1.], [1.,1.,1.25]])
# e1 = np.array([[1.,0.,0.], [1.,0.,0.], [1.,0.,0.], [-1.,0.,0.], [-1.,0.,0.], [-1.,0.,0.]])
# e2 = np.array([[1.,0.,0.], [1.,0.,0.], [1.,0.,0.], [-1.,0.,0.], [-1.,0.,0.], [-1.,0.,0.]])
pts1, pts2, e1, e2 = create_flap_points_normals(3.0,1,dim=3)
f1 = fit_ThinPlateSpline(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, wt_n=None, use_cvx=True)
#f2 = fit_ThinPlateSpline(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, wt_n=None, use_cvx=True)
f2 = te.tps_eval(pts1, pts2, e1, e2, bend_coef=0.01, rot_coef=1e-5, wt_n=None, nwsize=0.15, delta=0.0001)
#f2 = te.tps_fit_normals_cvx(pts1, pts2, e1, e2, bend_coef=0.1, rot_coef=1e-5, normal_coef=0.1, wt_n=None, nwsize=0.15, delta=0.0001)
#f2 = te.tps_fit_normals_exact_cvx(pts1, pts2, e1, e2, bend_coef=0.1, rot_coef=1e-5, normal_coef = 0.1, wt_n=None, nwsize=0.15, delta=0.002)
# import IPython
# IPython.embed()
mlab.figure(1, bgcolor=(0,0,0))
mayavi_utils.plot_warping(f1, pts1, pts2, fine=False, draw_plinks=False)
_,f1e2 = te.transformed_normal_direction(pts1, e1, f1, delta=0.0001)#np.asarray([tu.tps_jacobian(f2, pt, 2).dot(nm) for pt,nm in zip(pts1,e1)])
test_normals_pts(f1.transform_points(pts1), f1e2, wsize=0.15,delta=0.15)
test_normals_pts(pts2, e2, wsize=0.15,delta=0.15)
#mlab.show()
mlab.figure(2,bgcolor=(0,0,0))
#mlab.clf()
mayavi_utils.plot_warping(f2, pts1, pts2, fine=False, draw_plinks=False)
_,f2e2 = te.transformed_normal_direction(pts1, e1, f2, delta=0.0001)#np.asarray([tu.tps_jacobian(f2, pt, 2).dot(nm) for pt,nm in zip(pts1,e1)])
test_normals_pts(f2.transform_points(pts1), f2e2, wsize=0.15,delta=0.15)
test_normals_pts(pts2, e2, wsize=0.15,delta=0.15)
mlab.show()
示例12: test_normals_new4
def test_normals_new4 (n=2,l=0.5,dim=2):
pts1, pts2, e1, e2 = create_flap_points_normals(n,l,dim)
delta = 1e-2
f1 = fit_ThinPlateSpline(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, wt_n=None, use_cvx=True)
#f1 = te.tps_fit_normals_cvx(pts1, pts2, e1, e2, bend_coef=0.1, rot_coef=1e-5, normal_coef=0.1, wt_n=None, nwsize=0.15, delta=0.0001)
#f2 = fit_ThinPlateSpline(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, wt_n=None, use_cvx=True)
#f2 = te.tps_eval(pts1, pts2, e1, e2, bend_coef=0.0, rot_coef=1e-5, wt_n=None, nwsize=0.15, delta=1e-8)
#f2 = te.tps_fit_normals_cvx(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, normal_coef=10, wt_n=None, nwsize=0.15, delta=1e-6)
f2 = te.tps_fit_normals_cvx(pts1, pts2, e1, e2, bend_coef=0.0, rot_coef=1e-5, normal_coef=1, wt_n=None, nwsize=0.15, delta=delta)
mlab.figure(1, bgcolor=(0,0,0))
mayavi_utils.plot_warping(f1, pts1, pts2, fine=False, draw_plinks=False)
_,f1e2 = te.transformed_normal_direction(pts1, e1, f1, delta=delta)#np.asarray([tu.tps_jacobian(f2, pt, 2).dot(nm) for pt,nm in zip(pts1,e1)])
test_normals_pts(np.c_[f1.transform_points(pts1),np.zeros((pts2.shape[0],1))], np.c_[f1e2,np.zeros((f1e2.shape[0],1))], wsize=0.15,delta=0.15)
test_normals_pts(np.c_[pts2,np.zeros((pts2.shape[0],1))], np.c_[e2,np.zeros((e2.shape[0],1))], wsize=0.15,delta=0.15)
#mlab.show()
mlab.figure(2,bgcolor=(0,0,0))
#mlab.clf()
mayavi_utils.plot_warping(f2, pts1, pts2, fine=False, draw_plinks=False)
_,f2e2 = te.transformed_normal_direction(pts1, e1, f2, delta=delta)
test_normals_pts(np.c_[f2.transform_points(pts1),np.zeros((pts2.shape[0],1))], np.c_[f2e2,np.zeros((f2e2.shape[0],1))], wsize=0.15,delta=0.15)
test_normals_pts(np.c_[pts2,np.zeros((pts2.shape[0],1))], np.c_[e2,np.zeros((e2.shape[0],1))], wsize=0.15,delta=0.15)
mlab.show()
示例13: test_normals_new3
def test_normals_new3 ():
#pts1 = clouds.downsample(pts1, 0.02).astype('float64')
pts1 = gen_circle_points(0.5, 30)
pts2 = gen_circle_points_pulled_in(0.5,30,6,0.4)#gen_circle_points(0.5, 30) + np.array([0.1,0.1])
wt_n = None#np.linalg.norm(pts1-pts2,axis=1)*2+1
f1 = fit_ThinPlateSpline(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, wt_n=wt_n, use_cvx=True)
#f2 = fit_ThinPlateSpline(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, wt_n=None, use_cvx=True)
#f2 = te.tps_eval(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, wt_n=None, nwsize=0.15, delta=0.0001)
#f2 = te.tps_fit_normals_cvx(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, normal_coef=10, wt_n=wt_n, nwsize=0.15, delta=0.0001)
#f2 = te.tps_fit_normals_cvx(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, normal_coef=0.1, wt_n=None, nwsize=0.15, delta=0.0001)
f2 = te.tps_fit_normals_exact_cvx(pts1, pts2, bend_coef=0.1, rot_coef=1e-5, normal_coef = 1, wt_n=None, nwsize=0.15, delta=0.0001)
mlab.figure(1, bgcolor=(0,0,0))
mayavi_utils.plot_warping(f1, pts1, pts2, fine=False, draw_plinks=True)
test_normals_pts(np.c_[f1.transform_points(pts1),np.zeros((pts2.shape[0],1))], wsize=0.15,delta=0.15)
test_normals_pts(np.c_[pts2,np.zeros((pts2.shape[0],1))], wsize=0.15,delta=0.15)
#mlab.show()
mlab.figure(2,bgcolor=(0,0,0))
#mlab.clf()
mayavi_utils.plot_warping(f2, pts1, pts2, fine=False, draw_plinks=True)
test_normals_pts(np.c_[f2.transform_points(pts1),np.zeros((pts2.shape[0],1))], wsize=0.15,delta=0.15)
test_normals_pts(np.c_[pts2,np.zeros((pts2.shape[0],1))], wsize=0.15,delta=0.15)
mlab.show()
示例14: test_base_line2
def test_base_line2 (pts1, pts2):
pts1 = clouds.downsample(pts1, 0.02)
pts2 = clouds.downsample(pts2, 0.02)
print pts1.shape
print pts2.shape
#plotter = PlotterInit()
def plot_cb(src, targ, xtarg_nd, corr, wt_n, f):
plot_requests = plot_warping(f.transform_points, src, targ, fine=False)
for req in plot_requests:
plotter.request(req)
f1,_ = tps_rpm_bij(pts1, pts2, reg_init=10, reg_final=1, rot_reg=np.r_[1e-3,1e-3,1e-1], n_iter=50, plot_cb=plot_cb, plotting=0)
#raw_input("Done with tps_rpm_bij")
#plotter.request(gen_mlab_request(mlab.clf))
f2,_ = tps_rpm_bij_normals(pts1, pts2, reg_init=10, reg_final=01, n_iter=50, rot_reg=np.r_[1e-3,1e-3,1e-1], normal_coeff = 0.01,
nwsize = 0.07, plot_cb=plot_cb, plotting =0)
#raw_input('abcd')
from tn_rapprentice import tps
#print tps.tps_cost(f1.lin_ag, f1.trans_g, f1.w_ng, pts1, pts2, 1)
#print tps.tps_cost(f2.lin_ag, f2.trans_g, f2.w_ng, pts1, pts2, 1)
#plotter.request(gen_mlab_request(mlab.clf))
mlab.figure(1)
mayavi_utils.plot_warping(f1, pts1, pts2, fine=False, draw_plinks=True)
#mlab.show()
mlab.figure(2)
#mlab.clf()
mayavi_utils.plot_warping(f2, pts1, pts2, fine=False, draw_plinks=True)
mlab.show()
示例15: plot3dformesh
def plot3dformesh(x,cv,f):
return
cv = band.toZeroStatic(cv)
if MPI.COMM_WORLD.rank == 0:
v2 = cv.getArray()
pl.figure(bgcolor=(1,1,1),fgcolor=(0.5,0.5,0.5))
pl.triangular_mesh(x[:,0],x[:,1],x[:,2],f,scalars=v2)