当前位置: 首页>>代码示例>>Python>>正文


Python Bbox.from_extents方法代码示例

本文整理汇总了Python中matplotlib.transforms.Bbox.from_extents方法的典型用法代码示例。如果您正苦于以下问题:Python Bbox.from_extents方法的具体用法?Python Bbox.from_extents怎么用?Python Bbox.from_extents使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.transforms.Bbox的用法示例。


在下文中一共展示了Bbox.from_extents方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plotIToEBrokenAxis

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
def plotIToEBrokenAxis(sp, gIdx, neuronIdx, trialNum=0, axBoundaries=None,
                       axesProportions=(0.5, 0.5), bottomLimits=None,
                       topLimits=None, **kw):
    if axBoundaries is None:
        axBoundaries = [0, 0, 1, 1]
    left, bottom, right, top = axBoundaries
    title = kw.pop('title', 'E cell')
    fig   = kw.pop('fig', plt.gcf())
    h = top - bottom
    w = right - left
    hBottom = h*axesProportions[0]
    hTop = h*axesProportions[1]

    axBottom = fig.add_axes(Bbox.from_extents(left, bottom, right, bottom +
                                              hBottom))
    axTop = fig.add_axes(Bbox.from_extents(left, top - hTop, right, top),
                         sharex=axBottom)

    _, gI = aggr.computeYX(sp, iterList)
    M      = sp[0][gIdx][trialNum].data['g_EI']
    conns  = M[neuronIdx, :]

    pconn.plotConnHistogram(conns, title=title, ax=axBottom, **kw)
    kw['ylabel'] = ''
    pconn.plotConnHistogram(conns, title=title, ax=axTop, **kw)
    annG = gI[0, gIdx]
    if annG - int(annG) == 0:
        annG = int(annG)
    #ann = '$g_I$ = {0} nS'.format(annG)
    #fig.text(left+0.95*w, bottom+0.9*h, ann, ha='right', va='bottom',
    #        fontsize='x-small')

    axBottom.set_xlim([0, annG])
    axBottom.set_xticks([0, annG])
    axBottom.xaxis.set_ticklabels([0, '$g_I$'])
    axBottom.set_ylim(bottomLimits)
    axBottom.set_yticks(bottomLimits)
    axBottom.yaxis.set_minor_locator(ti.NullLocator())
    axTop.set_ylim(topLimits)
    axTop.set_yticks([topLimits[1]])
    axTop.xaxis.set_visible(False)
    axTop.spines['bottom'].set_visible(False)

    divLen = 0.07
    d = .015
    kwargs = dict(transform=fig.transFigure, color='k', clip_on=False)
    axBottom.plot((left-divLen*w, left+divLen*w), (bottom+hBottom + d,
                                                   bottom+hBottom - d),
                  **kwargs)
    axTop.plot((left-divLen*w, left+divLen*w), (top-hTop + d, top-hTop - d),
               **kwargs)

    return axBottom, axTop
开发者ID:MattNolanLab,项目名称:ei-attractor,代码行数:55,代码来源:connections.py

示例2: zoom_effect

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
def zoom_effect(ax_zoomed, ax_origin, xlims = None, orientation='below', **kwargs):
    """
    ax_zoomed : zoomed axes
    ax_origin:  the main axes
    (xmin,xmax) : the limits of the colored area in both plot axes.

    connect ax1 & ax2. The x-range of (xmin, xmax) in both axes will
    be marked.  The keywords parameters will be used ti create
    patches.

    """
    if xlims is None:
        tt = ax_zoomed.transScale + (ax_zoomed.transLimits + ax_origin.transAxes)
        transform = blended_transform_factory(ax_origin.transData, tt)

        bbox_zoomed=ax_zoomed.bbox
        bbox_origin=TransformedBbox(ax_zoomed.viewLim, transform)
    else:
        transform_zoomed=blended_transform_factory(ax_zoomed.transData, ax_zoomed.transAxes)
        transform_origin=blended_transform_factory(ax_origin.transData, ax_origin.transAxes)
    
        bbox_zoomed=TransformedBbox(Bbox.from_extents(xlims[0], 0, xlims[1], 1), transform_zoomed)
        bbox_origin=TransformedBbox(Bbox.from_extents(xlims[0], 0, xlims[1], 1), transform_origin)

    prop_patches = kwargs.copy()
    prop_patches["ec"] = "none"
    prop_patches["alpha"] = 0.2

    if orientation=='below':
        loc1a=2
        loc2a=3
        loc1b=1
        loc2b=4
    elif orientation=='above':
        loc1a=3
        loc2a=2
        loc1b=4
        loc2b=1
    else:
        raise Exception("orientation '%s' not recognized" % orientation)

    c1, c2, bbox_zoomed_patch, bbox_origin_patch, p = \
        connect_bbox(bbox_zoomed, bbox_origin,
                     loc1a=loc1a, loc2a=loc2a, loc1b=loc1b, loc2b=loc2b,
                     prop_lines=kwargs, prop_patches=prop_patches)

    ax_zoomed.add_patch(bbox_zoomed_patch)
    ax_origin.add_patch(bbox_origin_patch)
    ax_origin.add_patch(c1)
    ax_origin.add_patch(c2)
    ax_origin.add_patch(p)

    return c1, c2, bbox_zoomed_patch, bbox_origin_patch, p
开发者ID:jvierstra,项目名称:genome-tools,代码行数:55,代码来源:connectors.py

示例3: plot

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
    def plot(self, *args, **kwargs):
        ps = self.env.ps

        output_dir = self.config['output_dir']

        rateLeft    = rasterLeft
        rateBottom  = 0.2
        rateRight   = rasterRight
        rateTop     = self.myc['rateTop']

        for idx, noise_sigma in enumerate(ps.noise_sigmas):
            # E cells
            fig = self._get_final_fig(self.myc['fig_size'])
            ax = fig.add_axes(Bbox.from_extents(rateLeft, rateBottom, rateRight,
                rateTop))
            kw = {}
            if (idx != 0):
                kw['ylabel'] = ''

            rasters.plotAvgFiringRate(ps.bumpGamma[idx],
                    spaceType='bump',
                    noise_sigma=ps.noise_sigmas[idx],
                    popType='E',
                    r=rasterRC[idx][0], c=rasterRC[idx][1],
                    ylabelPos=self.myc['ylabelPos'],
                    color='red',
                    tLimits=tLimits,
                    ax=ax, **kw)
            fname = output_dir + "/bumps_rate_e{0}.pdf".format(noise_sigma)
            fig.savefig(fname, dpi=300, transparent=transparent)
            plt.close()

            # I cells
            fig = self._get_final_fig(self.myc['fig_size'])
            ax = fig.add_axes(Bbox.from_extents(rateLeft, rateBottom, rateRight,
                rateTop))
            kw = {}
            if (idx != 0):
                kw['ylabel'] = ''

            rasters.plotAvgFiringRate(ps.bumpGamma[idx],
                    spaceType='bump',
                    noise_sigma=ps.noise_sigmas[idx],
                    popType='I',
                    r=rasterRC[idx][0], c=rasterRC[idx][1],
                    ylabelPos=self.myc['ylabelPos'],
                    color='blue',
                    tLimits=tLimits,
                    ax=ax, **kw)
            fname = output_dir + "/bumps_rate_i{0}.pdf".format(noise_sigma)
            fig.savefig(fname, dpi=300, transparent=transparent)
            plt.close()
开发者ID:MattNolanLab,项目名称:ei-attractor,代码行数:54,代码来源:seizures.py

示例4: plot

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
    def plot(self, *args, **kwargs):
        ps = self.env.ps
        output_dir = self.config['output_dir']
        transparent = self.myc['transparent']

        for idx, noise_sigma in enumerate(ps.noise_sigmas):
            # E cells
            fig = self._get_final_fig(self.myc['fig_size'])
            l, b, r, t = self.myc['bbox']
            ax = fig.add_axes(Bbox.from_extents(l, b, r, t))
            kw = {}
            if (idx != 0):
                kw['ylabel'] = ''

            rasters.plotAvgFiringRate(ps.v[idx],
                    spaceType='velocity',
                    noise_sigma=noise_sigma,
                    popType='E',
                    r=rasterRC[idx][0], c=rasterRC[idx][1],
                    color='red',
                    ylabelPos=self.config['vel_rasters']['ylabelPos'],
                    tLimits=self.config['vel_rasters']['tLimits'],
                    trialNum=self.config['vel_rasters']['trialNum'],
                    sigmaTitle=False,
                    ax=ax, **kw)
            fname = output_dir + "/velocity_rate_e{0}.pdf".format(noise_sigma)
            fig.savefig(fname, dpi=300, transparent=transparent)
            plt.close()

            # I cells
            fig = self._get_final_fig(self.myc['fig_size'])
            ax = fig.add_axes(Bbox.from_extents(l, b, r, t))
            kw = {}
            if (idx != 0):
                kw['ylabel'] = ''

            rasters.plotAvgFiringRate(ps.v[idx],
                    spaceType='velocity',
                    noise_sigma=noise_sigma,
                    popType='I',
                    r=rasterRC[idx][0], c=rasterRC[idx][1],
                    color='blue',
                    ylabelPos=self.config['vel_rasters']['ylabelPos'],
                    tLimits=self.config['vel_rasters']['tLimits'],
                    trialNum=self.config['vel_rasters']['trialNum'],
                    sigmaTitle=False,
                    ax=ax, **kw)
            fname = output_dir + "/velocity_rate_i{0}.pdf".format(noise_sigma)
            fig.savefig(fname, dpi=300, transparent=transparent)
            plt.close()
开发者ID:MattNolanLab,项目名称:ei-attractor,代码行数:52,代码来源:velocity.py

示例5: setDirectory

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
    def setDirectory(self, rootPath, shape):
        super(GridSweepWidget, self).setDirectory(rootPath, shape)

        self.canvas.fig.clear()
        self.ax = self.canvas.fig.add_axes(
                Bbox.from_extents(self.sweepLeft, self.sweepBottom, self.sweepRight,
                                  self.sweepTop))
        self.cbar_kw.update({
            'label'      : 'Gridness score',
            'ticks'      : ti.MultipleLocator(0.5)})

        sweeps.plotGridTrial(self.dataSpace, self.varList, self.iterList,
                self.noise_sigma,
                trialNumList=[],
                sigmaTitle=False,
                ignoreNaNs=True,
                r=5, c=15,
                cbar=True, cbar_kw=self.cbar_kw,
                ax=self.ax,
                picker=True)

        c = self.ax.collections
        if (len(c) != 1):
            raise RuntimeError("Something went wrong! len(c) != 1")
        self.dataCollection = c[0]

        self.canvas.draw()
        self.dataRenewed.emit(self.dataSpace)
开发者ID:MattNolanLab,项目名称:ei-attractor,代码行数:30,代码来源:mplwidget.py

示例6: plot

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
    def plot(self, *args, **kwargs):
        ps = self.env.ps

        xlabel = self.myc.get('xlabel', None)
        ylabel = self.myc.get('ylabel', None)
        xticks = self.myc['xticks']
        yticks = self.myc['yticks']
        l, b, r, t = self.myc['bbox']
        normalize_ticks = self.myc.get('normalize_ticks', False)
        normalize_type = self.myc.get('normalize_type', None)
        fname = self.myc.get('fname', "generic_1d_sweep_{ns}.pdf")

        for ns_idx, noise_sigma in enumerate(ps.noise_sigmas):
            file_name = self.get_fname(fname, ns=noise_sigma)
            fig = self._get_final_fig(self.config['sweeps']['fig_size'])
            ax = fig.add_axes(Bbox.from_extents(l, b, r, t))
            sweeps.plot_1d_sweep(
                self.get_data(ns_idx),
                ax,
                xlabel='' if xticks[ns_idx] == False else xlabel,
                xticks=xticks[ns_idx],
                ylabel='' if yticks[ns_idx] == False else ylabel,
                yticks=yticks[ns_idx],
                title=noise_sigma,
                axis_setting=self.myc.get('axis_setting', 'scaled'))
            ax.set_xlim(self.myc.get('xlim', (None, None)))
            ax.set_ylim(self.myc.get('ylim', (None, None)))
            ax.yaxis.set_minor_locator(ti.AutoMinorLocator(2))
            fig.savefig(file_name, dpi=300, transparent=True)
            plt.close(fig)
开发者ID:MattNolanLab,项目名称:ei-attractor,代码行数:32,代码来源:base.py

示例7: plot

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
    def plot(self, *args, **kwargs):
        ylabel_coords = self.myc.get('ylabel_coords', None)
        x0, x1, dx = self.myc.get('x_range', (-.5, .5, .001))
        l, b, r, t = self.myc['bbox_rect']

        d = np.arange(x0, x1+dx, dx)
        y_dim = np.sqrt(3)/2.0
        ES_pAMPA_mu = y_dim/2.0
        ES_pAMPA_sigma = 0.5/6
        ES_pGABA_sigma = 0.5/6
        ES_pGABA_const = 0.013
        shift = 0.1

        # Excitatory surround
        ES_exc_profile         = np.exp(-(np.abs(d) - ES_pAMPA_mu)**2/2/ES_pAMPA_sigma**2)
        ES_exc_profile_shifted = np.exp(-(np.abs(d - shift) - ES_pAMPA_mu)**2/2/ES_pAMPA_sigma**2)
        ES_inh_profile         = (1-ES_pGABA_const)*np.exp(-d**2/2./ES_pGABA_sigma**2) + ES_pGABA_const

        fig = self._get_final_fig(self.myc['fig_size'])
        ax = fig.add_axes(Bbox.from_extents(l, b, r, t))
        self.plotWeights(ax, d, ES_exc_profile, ES_inh_profile, ES_pGABA_const,
                         linewidth=self.config['scale_factor'],
                         x_range=(x0, x1, dx))
        ax.set_xticks(self.myc.get('xticks', [-.5, .5]))
        ax.xaxis.set_minor_locator(ti.MultipleLocator(0.5))
        ax.xaxis.set_label_coords(x=0.5, y=-0.2)
        if ylabel_coords is not None:
            ax.yaxis.set_label_coords(ylabel_coords[0], ylabel_coords[1])
        fileName = self.get_fname("{base}_E_surr.pdf", base='fig_conn_func')
        plt.savefig(fileName, transparent=True)
开发者ID:MattNolanLab,项目名称:ei-attractor,代码行数:32,代码来源:weights.py

示例8: zoom_effect

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
def zoom_effect(ax1, ax2, xlim, **kwargs):

	trans1 = blended_transform_factory(ax1.transData, ax1.transAxes)
	trans2 = blended_transform_factory(ax2.transData, ax2.transAxes)

	bbox = Bbox.from_extents(xlim[0], 0, xlim[1], 1)

	tbbox1 = TransformedBbox(bbox, trans1)
	tbbox2 = TransformedBbox(bbox, trans2)

	
	prop_patches = kwargs.copy()
	prop_patches['ec'] = 'none'
	prop_patches['alpha'] = 0.1

	c1, c2, bbox_patch1, bbox_patch2, p = \
			connect_bboxes(tbbox1, tbbox2, loc1a=3, loc2a=2, loc1b=4, loc2b=1, prop_lines=kwargs, prop_patches=prop_patches)
	
	ax1.add_patch(bbox_patch1)
	ax2.add_patch(bbox_patch2)
	ax2.add_patch(c1)
	ax2.add_patch(c2)
	ax2.add_patch(p)

	return c1, c2, bbox_patch1, bbox_patch2, p
开发者ID:djhshih,项目名称:genomic,代码行数:27,代码来源:cn.py

示例9: main

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
def main():
    fig, ax = plt.subplots()

    years = np.arange(2004, 2009)
    heights = [7900, 8100, 7900, 6900, 2800]
    box_colors = [
        (0.8, 0.2, 0.2),
        (0.2, 0.8, 0.2),
        (0.2, 0.2, 0.8),
        (0.7, 0.5, 0.8),
        (0.3, 0.8, 0.7),
    ]

    for year, h, bc in zip(years, heights, box_colors):
        bbox0 = Bbox.from_extents(year - 0.4, 0., year + 0.4, h)
        bbox = TransformedBbox(bbox0, ax.transData)
        ax.add_artist(RibbonBoxImage(ax, bbox, bc, interpolation="bicubic"))
        ax.annotate(str(h), (year, h), va="bottom", ha="center")

    ax.set_xlim(years[0] - 0.5, years[-1] + 0.5)
    ax.set_ylim(0, 10000)

    background_gradient = np.zeros((2, 2, 4))
    background_gradient[:, :, :3] = [1, 1, 0]
    background_gradient[:, :, 3] = [[0.1, 0.3], [0.3, 0.5]]  # alpha channel
    ax.imshow(background_gradient, interpolation="bicubic", zorder=0.1,
              extent=(0, 1, 0, 1), transform=ax.transAxes, aspect="auto")

    plt.show()
开发者ID:QuLogic,项目名称:matplotlib,代码行数:31,代码来源:demo_ribbon_box.py

示例10: zoom_effect01

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
def zoom_effect01(ax1, ax2, xmin, xmax, **kwargs):
    u"""
    ax1 : the main axes
    ax1 : the zoomed axes
    (xmin,xmax) : the limits of the colored area in both plot axes.
    connect ax1 & ax2. The x-range of (xmin, xmax) in both axes will
    be marked.  The keywords parameters will be used ti create
    patches.
    """
    trans1 = blended_transform_factory(ax1.transData, ax1.transAxes)
    trans2 = blended_transform_factory(ax2.transData, ax2.transAxes)
    bbox = Bbox.from_extents(xmin, 0, xmax, 1)
    mybbox1 = TransformedBbox(bbox, trans1)
    mybbox2 = TransformedBbox(bbox, trans2)
    prop_patches=kwargs.copy()
    prop_patches["ec"]="none"
    prop_patches["alpha"]=0.2
    c1, c2, bbox_patch1, bbox_patch2, p = \
        connect_bbox(mybbox1, mybbox2,
                     loc1a=3, loc2a=2, loc1b=4, loc2b=1,
                     prop_lines=kwargs, prop_patches=prop_patches)
    ax1.add_patch(bbox_patch1)
    ax2.add_patch(bbox_patch2)
    ax2.add_patch(c1)
    ax2.add_patch(c2)
    ax2.add_patch(p)
    return c1, c2, bbox_patch1, bbox_patch2, p
开发者ID:,项目名称:,代码行数:29,代码来源:

示例11: plot

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
    def plot(self, *args, **kwargs):
        ps = self.env.ps
        myc = self._get_class_config()

        iter_list = self.config["iter_list"]
        l, b, r, t = self.myc["bbox_rect"]
        legend = self.myc.get("legend", True)
        legend_kwargs = myc["legend_kwargs"]

        xlabel = self.myc.get("xlabel", "P(bumps)")
        ylabel = "Gridness score"

        fig = self._get_final_fig(myc["fig_size"])
        ax = fig.add_axes(Bbox.from_extents(l, b, r, t))

        scatterColors = ["green", "red", "blue"]
        scatterOrders = [2, 3, 1]

        for ns_idx, noise_sigma in enumerate(ps.noise_sigmas):
            isBumpData = aggr.IsBump(ps.bumpGamma[ns_idx], iter_list, ignoreNaNs=True)
            gridData = aggr.GridnessScore(ps.grids[ns_idx], iter_list, ignoreNaNs=True, normalizeTicks=False)

            scatterPlot = scatter.ScatterPlot(
                isBumpData,
                gridData,
                None,
                None,
                None,
                None,
                None,
                c=scatterColors[ns_idx],
                s=6 * self.config["scale_factor"],
                linewidth=0.3,
                xlabel=xlabel,
                ylabel=ylabel,
                ax=ax,
                zorder=scatterOrders[ns_idx],
            )
            scatterPlot.plot()

        ax.xaxis.set_major_locator(ti.MultipleLocator(0.2))
        ax.yaxis.set_major_locator(ti.MultipleLocator(0.5))
        if legend:
            leg = ["0", "150", "300"]
            l = ax.legend(leg, **legend_kwargs)
            plt.setp(l.get_title(), size="small")
        # ax.set_ylabel(ax.get_ylabel(), y=0., ha='left')

        # Normal scale
        fname = self.config["output_dir"] + "/bumps_scatter_grids_vs_bumpFracTotal.pdf"
        fig.savefig(fname, dpi=300, transparent=True)

        # Exponential scale
        ax.set_xscale("exponential")
        ax.xaxis.set_major_locator(ti.MultipleLocator(0.5))
        ax.xaxis.set_minor_locator(ti.MultipleLocator(0.1))
        ax.set_xlim([-0.3, 1.002])
        fname = self.config["output_dir"] + "/bumps_scatter_grids_vs_bumpFracTotal_exp.pdf"
        fig.savefig(fname, dpi=300, transparent=True)
开发者ID:MattNolanLab,项目名称:ei-attractor,代码行数:61,代码来源:bumps.py

示例12: plotBumpSnapshots

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
def plotBumpSnapshots(FR, FRt, tstep, **kw):
    '''Snapshots of bumps in time.'''
    fig             = kw.pop('fig')
    timeTitles      = kw.pop('timeTitles', True)
    axesCoords      = kw.pop('axesCoords', (0.12, 0.01, 0.92, 0.7))
    axesDiv         = kw.pop('axesDiv', .01)
    bumpQuality     = kw.pop('bumpQuality', False)
    bumpQualityText = kw.pop('bumpQualityText', '')
    bumpQualityX    = kw.pop('bumpQualityX', -.9)
    maxRateColor    = kw.pop('maxRateColor', 'w')

    left, bottom, right, top = axesCoords
    width  = right - left
    height = top - bottom

    indexes = range(0, FRt.shape[0], tstep)
    oneWidth = float(width) / len(indexes)
    l = left
    bot = bottom
    max = np.max(FR[:, :, indexes])
    lastIndex = len(indexes) - 1
    idx = 0
    for it in indexes:
        print(it)
        t = bot + height
        r = l + oneWidth - axesDiv
        print(l, bot, r, top)

        ax = fig.add_axes(Bbox.from_extents(l, bot, r, top))
        plotBump(ax, FR[:, :, it], vmin=0, vmax=max, rasterized=True, **kw)
        if idx == lastIndex:
            rateText = "%.0f Hz" % max
            ax.text(1.05, .95, rateText, ha='left', va='top',
                    color=maxRateColor, transform=ax.transAxes, size='small',
                    weight='bold', clip_on=False)

        if bumpQuality and it == 0:
            txt = '{0:.2f}'.format(bumpQuality)
            ax.text(bumpQualityX, .5, txt, va='center', ha='center',
                    transform=ax.transAxes)

        if timeTitles:
            yTitle = 1.02
            ax.text(.5, yTitle, "{0}".format(FRt[it]*1e-3), size='medium',
                    transform=ax.transAxes, va='bottom', ha='center')
            if it == 0:
                ax.text(.5, yTitle + .3, "t(s)", ha='center', va='bottom',
                        transform=ax.transAxes)
                ax.text(bumpQualityX, yTitle, bumpQualityText, ha='center',
                        va='bottom', transform=ax.transAxes)

        l += oneWidth
        idx += 1

    return max  # Hack, but hopefully ok for now
开发者ID:MattNolanLab,项目名称:ei-attractor,代码行数:57,代码来源:examples.py

示例13: onselect

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
    def onselect(self, eclick, erelease):
        if self.coord is None:
            return
        left, bottom = min(eclick.xdata, erelease.xdata), min(eclick.ydata, erelease.ydata)
        right, top = max(eclick.xdata, erelease.xdata), max(eclick.ydata, erelease.ydata)
        region = Bbox.from_extents(left, bottom, right, top)

        selectedIds = []
        for (xy, idd) in zip(self.matrix.values, self.matrix.ids):
            if region.contains(xy[0], xy[1]):
                selectedIds.append(idd)
        self.coord.notifyModules(selectedIds)
开发者ID:painter1,项目名称:vistrails,代码行数:14,代码来源:views.py

示例14: onselect

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
    def onselect(self, eclick, erelease):
        if (self.coord is None): return

        left, bottom = min(eclick.xdata, erelease.xdata), min(eclick.ydata, erelease.ydata)
        right, top = max(eclick.xdata, erelease.xdata), max(eclick.ydata, erelease.ydata)
        region = Bbox.from_extents(left, bottom, right, top)
        
        selectedIds = []
        for (x, y, idd) in zip(self.Xs, self.Ys, self.stats.ids):
            if region.contains(x, y):
                selectedIds.append(idd)
        self.coord.notifyModules(selectedIds)
开发者ID:imclab,项目名称:vistrails,代码行数:14,代码来源:plots.py

示例15: get_grid_info

# 需要导入模块: from matplotlib.transforms import Bbox [as 别名]
# 或者: from matplotlib.transforms.Bbox import from_extents [as 别名]
 def get_grid_info(self,
                   x1, y1, x2, y2):
     """
     lon_values, lat_values : list of grid values. if integer is given,
                        rough number of grids in each direction.
     """
     extremes = self.extreme_finder(self.inv_transform_xy, x1, y1, x2, y2)
     lon_min, lon_max, lat_min, lat_max = extremes
     lon_levs, lon_n, lon_factor = \
               self.grid_locator1(lon_min, lon_max)
     lat_levs, lat_n, lat_factor = \
               self.grid_locator2(lat_min, lat_max)
     if lon_factor is None:
         lon_values = np.asarray(lon_levs[:lon_n])
     else:
         lon_values = np.asarray(lon_levs[:lon_n]/lon_factor)
     if lat_factor is None:
         lat_values = np.asarray(lat_levs[:lat_n])
     else:
         lat_values = np.asarray(lat_levs[:lat_n]/lat_factor)
     lon_lines, lat_lines = self._get_raw_grid_lines(lon_values,
                                                     lat_values,
                                                     lon_min, lon_max,
                                                     lat_min, lat_max)
     ddx = (x2-x1)*1.e-10
     ddy = (y2-y1)*1.e-10
     bb = Bbox.from_extents(x1-ddx, y1-ddy, x2+ddx, y2+ddy)
     grid_info = {}
     grid_info["extremes"] = extremes
     grid_info["lon_lines"] = lon_lines
     grid_info["lat_lines"] = lat_lines
     grid_info["lon"] = self._clip_grid_lines_and_find_ticks(lon_lines,
                                                             lon_values,
                                                             lon_levs,
                                                             bb)
     grid_info["lat"] = self._clip_grid_lines_and_find_ticks(lat_lines,
                                                             lat_values,
                                                             lat_levs,
                                                             bb)
     grid_info["lon"]["tick_labels"] = dict()
     tck_labels = grid_info["lon"]["tick_labels"]
     for direction in ["left", "bottom", "right", "top"]:
         levs = grid_info["lon"]["tick_levels"][direction]
         tck_labels[direction] = self.tick_formatter1(direction,
                                                      lon_factor, levs)
     grid_info["lat"]["tick_labels"] = dict()
     tck_labels = grid_info["lat"]["tick_labels"]
     for direction in ["left", "bottom", "right", "top"]:
         levs = grid_info["lat"]["tick_levels"][direction]
         tck_labels[direction] = self.tick_formatter2(direction,
                                                      lat_factor, levs)
     return grid_info
开发者ID:,项目名称:,代码行数:54,代码来源:


注:本文中的matplotlib.transforms.Bbox.from_extents方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。