当前位置: 首页>>代码示例>>Python>>正文


Python Basemap.contourf方法代码示例

本文整理汇总了Python中matplotlib.toolkits.basemap.Basemap.contourf方法的典型用法代码示例。如果您正苦于以下问题:Python Basemap.contourf方法的具体用法?Python Basemap.contourf怎么用?Python Basemap.contourf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.toolkits.basemap.Basemap的用法示例。


在下文中一共展示了Basemap.contourf方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Basemap

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
# Example to show how to make multi-panel plots.

# 2-panel plot, oriented vertically, colorbar on bottom.

rcParams["figure.subplot.hspace"] = 0.4  # more height between subplots
rcParams["figure.subplot.wspace"] = 0.5  # more width between subplots

# create new figure
fig = P.figure()
# panel 1
mnh = Basemap(lon_0=-105, boundinglat=20.0, resolution="c", area_thresh=10000.0, projection="nplaea")
xnh, ynh = mnh(lons, lats)
ax = fig.add_subplot(211)
CS = mnh.contour(xnh, ynh, hgt, 15, linewidths=0.5, colors="k")
CS = mnh.contourf(xnh, ynh, hgt, 15, cmap=P.cm.Spectral)
# colorbar on bottom.
l, b, w, h = ax.get_position()
cax = P.axes([l, b - 0.05, w, 0.025])  # setup colorbar axes
P.colorbar(cax=cax, orientation="horizontal", ticks=CS.levels[0::4])  # draw colorbar
P.axes(ax)  # make the original axes current again
mnh.drawcoastlines(linewidth=0.5)
delat = 30.0
circles = P.arange(0.0, 90.0, delat).tolist() + P.arange(-delat, -90, -delat).tolist()
mnh.drawparallels(circles, labels=[1, 0, 0, 0])
delon = 45.0
meridians = P.arange(0, 360, delon)
mnh.drawmeridians(meridians, labels=[1, 0, 0, 1])
P.title("NH 500 hPa Height (cm.Spectral)")

# panel 2
开发者ID:,项目名称:,代码行数:32,代码来源:

示例2: Basemap

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
#--- Mapping information:

map = Basemap( projection='cyl', resolution='l'
             , llcrnrlon=0, urcrnrlon=360
             , llcrnrlat=-76.875, urcrnrlat=76.875
             , lon_0=180, lat_0=0
             )
map.drawmeridians(p.arange(0,361,45), labels=[0,0,0,1])
map.drawparallels(p.arange(-90,90,30), labels=[1,0,0,1])
map.drawcoastlines()


#--- Write out contour map and view using preview:

x, y = p.meshgrid(lon,lat)
CS = map.contourf(x, y, u1, cmap=p.cm.gray)
p.text( 0.5, -0.15, 'Longitude [deg]'
      , horizontalalignment='center'
      , verticalalignment='center'
      , transform = p.gca().transAxes )
p.text( -0.11, 0.5, 'Latitude [deg]'
      , rotation='vertical'
      , horizontalalignment='center'
      , verticalalignment='center'
      , transform = p.gca().transAxes )
p.title('QTCM u1')
cbar = p.colorbar(CS, orientation='horizontal', shrink=0.6)
cbar.ax.set_xlabel('See QTCM Documentation')
p.savefig('foo.png')
os.system('preview foo.png')
开发者ID:jwblin,项目名称:qtcm,代码行数:32,代码来源:view.py

示例3: meshgrid

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
lons, lats = meshgrid(lons1, lats1)

# plot vectors in geographical (lat/lon) coordinates.

# north polar projection.
m = Basemap(lon_0=-135,boundinglat=25,
            resolution='c',area_thresh=10000.,projection='npstere')
# create a figure, add an axes.
fig=figure(figsize=(8,8))
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# rotate wind vectors to map projection coordinates.
# (also compute native map projections coordinates of lat/lon grid)
# only do Northern Hemisphere.
urot,vrot,x,y = m.rotate_vector(u[36:,:],v[36:,:],lons[36:,:],lats[36:,:],returnxy=True)
# plot filled contours over map.
cs = m.contourf(x,y,p[36:,:],15,cmap=cm.jet)
# plot wind vectors over map.
Q = m.quiver(x,y,urot,vrot) #or specify, e.g., width=0.003, scale=400)
qk = quiverkey(Q, 0.95, 1.05, 25, '25 m/s', labelpos='W')
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(cax=cax) # draw colorbar
axes(ax)  # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = arange(0.,90.+delat,delat).tolist()+\
          arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
delon = 45.
开发者ID:,项目名称:,代码行数:33,代码来源:

示例4: geographical

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
# plot vectors in geographical (lat/lon) coordinates.

# north polar projection.
m = Basemap(llcrnrlon=-180.,llcrnrlat=10.,urcrnrlon=0.,urcrnrlat=10.,\
            resolution='c',area_thresh=10000.,projection='stere',\
            lat_0=90.,lon_0=-135.,lat_ts=90.)
# setup figure with same aspect ratio as map.
xsize = rcParams['figure.figsize'][0]
fig=figure(figsize=(xsize,m.aspect*xsize))
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# rotate wind vectors to map projection coordinates.
# (also compute native map projections coordinates of lat/lon grid)
# only do Northern Hemisphere.
urot,vrot,x,y = m.rotate_vector(u[36:,:],v[36:,:],lons[36:,:],lats[36:,:],returnxy=True)
# plot filled contours over map.
levels, colls = m.contourf(x,y,p[36:,:],15,cmap=cm.jet,colors=None)
# plot wind vectors over map.
m.quiver(x,y,urot,vrot)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax)  # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = arange(0.,90.+delat,delat).tolist()+\
          arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
delon = 45.
meridians = arange(-180,180,delon)
开发者ID:,项目名称:,代码行数:33,代码来源:

示例5: m

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# set desired contour levels.
clevs = p.arange(960,1061,5)
# compute native x,y coordinates of grid.
x, y = m(lons, lats)
# define parallels and meridians to draw.
parallels = p.arange(-80.,90,20.)
meridians = p.arange(0.,360.,20.)
# number of repeated frames at beginning and end is n1.
nframe = 0; n1 = 10
l,b,w,h=ax.get_position()
# loop over times, make contour plots, draw coastlines, 
# parallels, meridians and title.
for nt,date in enumerate(datelabels[1:]):
    CS = m.contour(x,y,slp[nt,:,:],clevs,linewidths=0.5,colors='k',animated=True)
    CS = m.contourf(x,y,slp[nt,:,:],clevs,cmap=p.cm.RdBu_r,animated=True)
    # plot wind vectors on lat/lon grid.
    # rotate wind vectors to map projection coordinates.
    #urot,vrot = m.rotate_vector(u[nt,:,:],v[nt,:,:],lons,lats)
    # plot wind vectors over map.
    #Q = m.quiver(x,y,urot,vrot,scale=500) 
    # plot wind vectors on projection grid (looks better).
    # first, shift grid so it goes from -180 to 180 (instead of 0 to 360
    # in longitude).  Otherwise, interpolation is messed up.
    ugrid,newlons = shiftgrid(180.,u[nt,:,:],longitudes,start=False)
    vgrid,newlons = shiftgrid(180.,v[nt,:,:],longitudes,start=False)
    # transform vectors to projection grid.
    urot,vrot,xx,yy = m.transform_vector(ugrid,vgrid,newlons,latitudes,51,51,returnxy=True,masked=True)
    # plot wind vectors over map.
    Q = m.quiver(xx,yy,urot,vrot,scale=500)
    # make quiver key.
开发者ID:,项目名称:,代码行数:33,代码来源:

示例6: enumerate

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
#plots = ['contour','imshow']

for np,plot in enumerate(plots):

    fig.add_subplot(1,2,np+1)
    ax = gca()

    # plot data.
    print plot+' plot ...'
    if plot == 'pcolor':
        m.pcolor(x,y,hgt,shading='flat')
    elif plot == 'imshow':
        im = m.imshow(hgt)
    elif plot == 'contour':
        levels, colls = m.contour(x,y,hgt,15,linewidths=0.5,colors='k')
        levels, colls = m.contourf(x,y,hgt,15,cmap=cm.jet,colors=None)

    # set size of plot to match aspect ratio of map.
    l,b,w,h = ax.get_position()
    b = 0.5 - 0.5*w*m.aspect; h = w*m.aspect
    ax.set_position([l,b,w,h])
    
    # draw map.
    m.drawcoastlines()
	
    # draw parallels
    delat = 30.
    delon = 90.
    circles = arange(10.,90.+delat,delat).tolist()
    m.drawparallels(circles,labels=[0,0,1,1])
开发者ID:,项目名称:,代码行数:32,代码来源:

示例7: pickle

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
# read in topo data from pickle (on a regular lat/lon grid)
topodict = cPickle.load(open('etopo20.pickle','rb'))
etopo = topodict['data']; lons = topodict['lons']; lats = topodict['lats']
# create figure.
fig = Figure()
canvas = FigureCanvas(fig)
ax = fig.add_axes([0.125,0.175,0.75,0.75],frameon=False)
# create Basemap instance for Robinson projection.
# set 'ax' keyword so pylab won't be imported.
m = Basemap(projection='robin',lon_0=0.5*(lons[0]+lons[-1]),ax=ax)
# reset figure size to have same aspect ratio as map.
# fig will be 8 inches wide.
fig.set_figsize_inches((8,m.aspect*8.))
# make filled contour plot.
x, y = m(*meshgrid(lons, lats))
levels, colls = m.contourf(x,y,etopo,30,cmap=cm.jet,colors=None)
# draw coastlines.
m.drawcoastlines()
# draw a line around the map region.
m.drawmapboundary()
# draw parallels and meridians.
m.drawparallels(nx.arange(-60.,90.,30.),labels=[1,0,0,0],fontsize=10)
m.drawmeridians(nx.arange(0.,420.,60.),labels=[0,0,0,1],fontsize=10)
# add a title.
ax.set_title('Robinson Projection')
# add a colorbar.
cax = fig.add_axes([0.25, 0.05, 0.5, 0.05],frameon=False)
fig.colorbar(colls.mappable, cax=cax, tickfmt='%d', orientation='horizontal') 
# save image (width 800 pixels with dpi=100 and fig width 8 inches).
canvas.print_figure('simpletest',dpi=100)
# done.
开发者ID:,项目名称:,代码行数:33,代码来源:

示例8: max

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
print max(ravel(spd))
udat, vdat, xv, yv = m.transform_vector(u,v,lons,lats,nxv,nyv,returnxy=True)
pdat, xp, yp = m.transform_scalar(p,lons,lats,nxp,nyp,returnxy=True)

print min(ravel(udat)),max(ravel(udat))
print min(ravel(vdat)),max(ravel(vdat))
print min(ravel(pdat)),max(ravel(pdat))
spd = sqrt(udat**2+vdat**2)
print max(ravel(spd))

# setup figure with same aspect ratio as map.
xsize = rcParams['figure.figsize'][0]
fig=figure(figsize=(xsize,m.aspect*xsize))
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# plot filled contours over map
levels, colls = m.contourf(xp,yp,pdat,15,cmap=cm.jet,colors=None)
# plot wind vectors over map.
m.quiver(xv,yv,udat,vdat)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes.
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax)  # make the original axes current again
m.drawcoastlines()
m.drawcountries()
# draw parallels
delat = 20.
circles = arange(0.,90.+delat,delat).tolist()+\
          arange(-delat,-90.-delat,-delat).tolist()
m.drawparallels(circles,labels=[1,1,1,1])
# draw meridians
delon = 45.
meridians = arange(-180,180,delon)
开发者ID:,项目名称:,代码行数:33,代码来源:

示例9: basemap

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
lons[0:len(lonsin)] = lonsin-0.5*delon
lons[-1] = lonsin[-1]+0.5*delon
lats[0:len(latsin)] = latsin-0.5*delat
lats[-1] = latsin[-1]+0.5*delat

# setup of basemap ('ortho' = orthographic projection)
m = Basemap(projection='ortho',
            resolution='c',area_thresh=10000.,lat_0=30,lon_0=-60)
fig=m.createfigure()
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# pcolor plot (slow)
#x,y = m(*meshgrid(lons,lats))
#p = m.pcolor(x,y,topodatin,shading='flat')
# filled contours (faster)
x,y = m(*meshgrid(lonsin,latsin))
cs = m.contourf(x,y,topodatin,20,cmap=cm.jet)
cax = axes([0.875, 0.1, 0.05, 0.7]) # setup colorbar axes
colorbar(tickfmt='%d', cax=cax) # draw colorbar
axes(ax)  # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
# draw parallels and meridians (labelling is 
# not implemented for orthographic).
parallels = arange(-80.,90,20.)
m.drawparallels(parallels)
meridians = arange(0.,360.,20.)
m.drawmeridians(meridians)
# draw boundary around map region.
m.drawmapboundary()
title('Orthographic')
print 'plotting Orthographic example, close plot window to proceed ...'
开发者ID:,项目名称:,代码行数:33,代码来源:

示例10: plot_ncdf_output

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]

#.........这里部分代码省略.........
        elif N.size(rngs_idxs['lon']) == 1:
            zgrid = num.MLab.squeeze(data[ ritim[0]:ritim[-1]+1,
                                           rilat[0]:rilat[-1]+1, 
                                           rilon[0] ])
        else:
            raise ValueError, 'unrecognized configuration'


        #* Change zgrid for special case of a lat. vs. time contour 
        #  plot.  Calculate xgrid and ygrid:

        if keys_rngs_sizes_gt_1.count('time') and \
           keys_rngs_sizes_gt_1.count('lat'):
           zgrid = N.transpose(zgrid)

        xgrid, ygrid = pylab.meshgrid(x, y)
        

        #* Set contour levels:

        if plotkwds['levels'] == None:
            levels = nice_levels(zgrid)
        else:
            levels = plotkwds['levels']


        #- Plot (creating continents first if is a lat vs. lon plot)
        #  and write contour levels/color bar as appropriate:

        if keys_rngs_sizes_gt_1.count('lon') and \
           keys_rngs_sizes_gt_1.count('lat'):
            mapplot = Basemap(projection='cyl', resolution='l',
                              llcrnrlon=N.min(xgrid), llcrnrlat=N.min(ygrid),
                              urcrnrlon=N.max(xgrid), urcrnrlat=N.max(ygrid))
            mapplot.drawcoastlines()
            mapplot.drawmeridians(nice_levels(rngs['lon'], 
                                  approx_nlev=plotkwds['nlatlon']),
                                  labels=[1,0,0,1])
            mapplot.drawparallels(nice_levels(rngs['lat'],
                                  approx_nlev=plotkwds['nlatlon']),
                                  labels=[1,0,0,1])
            if plotkwds['filled']:
                plot = mapplot.contourf(xgrid, ygrid, zgrid, levels)
                pylab.colorbar(plot, orientation='horizontal', format='%g')
            else:
                plot = mapplot.contour(xgrid, ygrid, zgrid, levels)
                pylab.clabel(plot, inline=1, fontsize=10, fmt='%g')
        else:
            if plotkwds['filled']:
                plot = pylab.contourf(xgrid, ygrid, zgrid, levels)
                pylab.colorbar(plot, orientation='horizontal', format='%g')
            else:
                plot = pylab.contour(xgrid, ygrid, zgrid, levels)
                pylab.clabel(plot, inline=1, fontsize=10, fmt='%g')

    else:
        raise ValueError, 'unrecognized plottype'


    #- Add titling.  Lat vs. lon plots do not have axis labels because
    #  the map labels already make it clear, and for those plots the
    #  title also includes the time value:

    if keys_rngs_sizes_gt_1.count('lon') and \
       keys_rngs_sizes_gt_1.count('lat'):
        titlename = titlename + ' at ' \
                  + dimname['time'] + ' ' \
                  + str(rngs['time'][0]) + ' ' \
                  + dimunits['time']
        titlename = mpl_latex_script1(titlename)
        pylab.title(titlename)
    else: 
        titlename = mpl_latex_script1(titlename)
        xname = mpl_latex_script1(xname)
        yname = mpl_latex_script1(yname)
        pylab.xlabel(xname)
        pylab.ylabel(yname)
        pylab.title(titlename)


    #- Output plot to PNG file or screen.  The show command seems to
    #  have a problem on my Mac OS X, so save to a temporary file
    #  and use preview to view for fn == None and tmppreview set to
    #  True.  Note that the temporary file is not deleted by this 
    #  method:

    if plotkwds['fn'] == None:                       #+ Screen display
        if plotkwds['tmppreview'] and sys.platform == 'darwin':
            outputfn = tempfile.mkstemp('.png','qtcm_')
            pylab.savefig(outputfn[-1])
            os.system('open -a /Applications/Preview.app '+outputfn[-1])
        else:
            pylab.show()

    elif type(plotkwds['fn']) == type('a'):          #+ Write to file
        pylab.savefig(plotkwds['fn'])
        pylab.close(1)

    else:
        raise ValueError, 'cannot write to this type of file'
开发者ID:jwblin,项目名称:qtcm,代码行数:104,代码来源:plot.py

示例11: figure

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
		cdict = {'red': ((0.,)*3,(.5,1.,1.),(1.,1.,1.)),
			'green': ((0.,)*3,(.5,1.,1.),(1.,0.,0.)),
			'blue': ((0.,1.,1.),(.5,1.,1.),(1.,0.,0.))}
		return matplotlib.colors.LinearSegmentedColormap('bwr',cdict,256)

	figure(figsize=(8,8))
	subplot(ncol,nrow,nslice)
	for i in xrange(nslice):
		lon = composites.getLongitude()
		lat = composites.getLatitude()
		xx,yy = meshgrid(lon,lat)
		m = Basemap(resolution='l',lat_0=N.average(lat),lon_0=N.average(lon),
			llcrnrlon=min(lon),llcrnrlat=min(lat),
			urcrnrlon=max(lon),urcrnrlat=max(lat))
		levels = vcs.mkscale(genutil.minmax(composites))
		m.contourf(lon,lat,composites[i],levels=levels,cmap=bwr)
		clabel(m.contour(lon,lat,composites[i],levels=levels))
		title("Phase %i/%i" (i+1,6))
		m.drawcoastlines()
		m.drawcountries()
		m.fillcontinents(color='coral')
		m.drawparallels(vcs.mkscale(genutil.minmax(lat)),labels=[1,0,0,0])
		m.drawmeridians(vcs.mkscale(genutil.minmax(lon)),labels=[0,0,0,1])
	figtext(.5,1.,"\n%s [%s]" % ("El Nino phase composites\nSea surface temperature", composites.units))
	savefig(sys.argv[0].replace(".py",".png"))
	show()
	

# Fall back to vcs because we have it!
except:
	# Plot 1 phase over two, then a time series
开发者ID:NCPP,项目名称:uvcdat-devel,代码行数:33,代码来源:example1.py

示例12: load

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
hgt = load('500hgtdata.gz')
lons = load('500hgtlons.gz')
lats = load('500hgtlats.gz')
# shift data so lons go from -180 to 180 instead of 0 to 360.
hgt,lons = shiftgrid(180.,hgt,lons,start=False)
lons, lats = meshgrid(lons, lats)

# create new figure
fig=figure()
# setup of sinusoidal basemap
m = Basemap(resolution='c',projection='sinu',lon_0=0)
ax = fig.add_axes([0.1,0.1,0.7,0.7])
# make a filled contour plot.
x, y = m(lons, lats)
CS = m.contour(x,y,hgt,15,linewidths=0.5,colors='k')
CS = m.contourf(x,y,hgt,15,cmap=cm.jet)
l,b,w,h=ax.get_position()
cax = axes([l+w+0.075, b, 0.05, h]) # setup colorbar axes
colorbar(drawedges=True, cax=cax) # draw colorbar
axes(ax)  # make the original axes current again
# draw coastlines and political boundaries.
m.drawcoastlines()
m.drawmapboundary()
m.fillcontinents()
# draw parallels and meridians.
parallels = arange(-60.,90,30.)
m.drawparallels(parallels,labels=[1,0,0,0])
meridians = arange(-360.,360.,30.)
m.drawmeridians(meridians)
title('Sinusoidal Filled Contour Demo')
print 'plotting with sinusoidal basemap ...'
开发者ID:,项目名称:,代码行数:33,代码来源:

示例13: data

# 需要导入模块: from matplotlib.toolkits.basemap import Basemap [as 别名]
# 或者: from matplotlib.toolkits.basemap.Basemap import contourf [as 别名]
# read in topo data (on a regular lat/lon grid)
# longitudes go from 20 to 380.
etopo = load('etopo20data.gz')
lons = load('etopo20lons.gz')
lats = load('etopo20lats.gz')
# create figure.
fig = Figure()
canvas = FigureCanvas(fig)
# create axes instance, leaving room for colorbar at bottom.
ax = fig.add_axes([0.125,0.175,0.75,0.75])
# create Basemap instance for Robinson projection.
# set 'ax' keyword so pylab won't be imported.
m = Basemap(projection='robin',lon_0=0.5*(lons[0]+lons[-1]),ax=ax)
# make filled contour plot.
x, y = m(*meshgrid(lons, lats))
cs = m.contourf(x,y,etopo,30,cmap=cm.jet)
# draw coastlines.
m.drawcoastlines()
# draw a line around the map region.
m.drawmapboundary()
# draw parallels and meridians.
m.drawparallels(nx.arange(-60.,90.,30.),labels=[1,0,0,0],fontsize=10)
m.drawmeridians(nx.arange(0.,420.,60.),labels=[0,0,0,1],fontsize=10)
# add a title.
ax.set_title('Robinson Projection')
# add a colorbar.
l,b,w,h = ax.get_position()
cax = fig.add_axes([l, b-0.1, w, 0.03],frameon=False) # setup colorbar axes
fig.colorbar(cs, cax=cax, orientation='horizontal',ticks=cs.levels[::3]) 
# save image (width 800 pixels with dpi=100 and fig width 8 inches).
canvas.print_figure('simpletest',dpi=100)
开发者ID:,项目名称:,代码行数:33,代码来源:


注:本文中的matplotlib.toolkits.basemap.Basemap.contourf方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。