本文整理汇总了Python中matplotlib.rcParams.update函数的典型用法代码示例。如果您正苦于以下问题:Python update函数的具体用法?Python update怎么用?Python update使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了update函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_demo
def run_demo(path, ext, seed):
from matplotlib import rcParams
import numpy.random
from mplchaco import mpl2chaco
mpldir = os.path.join(path, "mpl")
chacodir = os.path.join(path, "chaco")
mkdirp(mpldir)
mkdirp(chacodir)
# like IPython inline plot
rcParams.update({
'figure.figsize': (6.0, 4.0),
'font.size': 10,
'savefig.dpi': 72,
'figure.subplot.bottom': 0.125,
})
numpy.random.seed(seed)
imgfmt = "{{0}}.{0}".format(ext).format
for func in demos:
fig = func()
cfig = mpl2chaco(fig)
dpi = fig.get_dpi()
width = fig.get_figwidth() * dpi
height = fig.get_figheight() * dpi
mplpath = imgfmt(os.path.join(mpldir, func.__name__))
chacopath = imgfmt(os.path.join(chacodir, func.__name__))
fig.savefig(mplpath)
save_plot(cfig.plot, chacopath, width, height)
示例2: MicrOscilloscope1
def MicrOscilloscope1(SoundBoard, Rate, YLim, FreqBand, MicSens_VPa, FramesPerBuf=512, Rec=False):
Params = {'backend': 'Qt5Agg'}
from matplotlib import rcParams; rcParams.update(Params)
import matplotlib.animation as animation
from matplotlib import pyplot as plt
SBInAmpF = Hdf5F.SoundCalibration(SBAmpFsFile, SoundBoard,
'SBInAmpF')
r = pyaudio.PyAudio()
Plotting = r.open(format=pyaudio.paFloat32,
channels=1,
rate=Rate,
input=True,
output=False,
#input_device_index=18,
frames_per_buffer=FramesPerBuf)
#stream_callback=InCallBack)
Fig = plt.figure()
Ax = plt.axes(xlim=FreqBand, ylim=YLim)
Plot, = Ax.plot([float('nan')]*(Rate//10), lw=1)
def AnimInit():
Data = array.array('f', [])
Plot.set_ydata(Data)
return Plot,
def PltUp(n):
# Data = array.array('f', Plotting.read(Rate//10))
Data = array.array('f', Plotting.read(Rate//10,
exception_on_overflow=False))
Data = [_ * SBInAmpF for _ in Data]
HWindow = signal.hanning(len(Data)//(Rate/1000))
F, PxxSp = signal.welch(Data, Rate, HWindow, nperseg=len(HWindow), noverlap=0,
scaling='density')
Start = np.where(F > FreqBand[0])[0][0]-1
End = np.where(F > FreqBand[1])[0][0]-1
BinSize = F[1] - F[0]
RMS = sum(PxxSp[Start:End] * BinSize)**0.5
dB = 20*(math.log(RMS/MicSens_VPa, 10)) + 94
print(dB, max(PxxSp))
Plot.set_xdata(F)
Plot.set_ydata(PxxSp)
return Plot,
Anim = animation.FuncAnimation(Fig, PltUp, frames=FramesPerBuf, interval=16,
blit=False)
if Rec:
Writers = animation.writers['ffmpeg']
Writer = Writers(fps=15, metadata=dict(artist='Me'))
Anim.save('MicrOscilloscope.mp4', writer=Writer)
plt.show()
return(None)
示例3: valueOccurenceGraphInverse
def valueOccurenceGraphInverse(nameDict, height):
valueOps = [nameDict[name].opAtHeight(height) for name in nameDict]
values = [x.value for x in valueOps if x is not None]
counter = collections.Counter(values)
prevCount = 0
maxValues = len(values)
total = len(values)
xData = []
yData = []
for value, count in reversed(counter.most_common()):
if count > prevCount:
xData.append(prevCount)
yData.append(total/maxValues)
for i in range(prevCount + 1, count):
xData.append(i)
yData.append(total/maxValues)
total -= count
prevCount = count
xData.append(count)
yData.append(total)
ax = plt.subplot(111)
plt.plot(xData, yData)
ax.set_xlim([-300,20000])
formatter = FuncFormatter(to_percent)
plt.gca().yaxis.set_major_formatter(formatter)
plt.xlabel(r"\textbf{Value occurs more than n times}")
plt.ylabel(r"\textbf{Percent of total names}")
rc('font', serif='Helvetica Neue')
rc('text', usetex='true')
rcParams.update({'font.size': 16})
rcParams.update({'figure.autolayout': True})
示例4: imshow_wrapper
def imshow_wrapper(H, title=None, fname=None, size=(2.2, 2.2), adjust=0.):
fig = plt.figure()
ax = fig.add_subplot(111)
font = {'family' : 'normal',
'weight' : 'bold',
'size' : 8}
matplotlib.rc('font', **font)
rcParams.update({'figure.autolayout': True})
plt.imshow(H, cmap=cm.Greys)
plt.colorbar()
plt.xlabel('column index')
plt.ylabel('row index')
if title == None:
plt.title('Entries of H')
else:
plt.title(title)
xticks = ax.xaxis.get_major_ticks()
xticks[-1].label1.set_visible(False)
yticks = ax.yaxis.get_major_ticks()
yticks[-1].label1.set_visible(False)
F = plt.gcf()
F.subplots_adjust(left=adjust)
plt.show()
F.set_size_inches(size)
if fname != None:
fig.savefig(fname + '.eps')
示例5: plotV
def plotV(Sall):
params = {
'axes.labelsize': 10,
'font.size': 10,
'legend.fontsize': 10,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'text.usetex': False,
'figure.figsize': [3.8, 3.8],
}
rcParams.update(params)
for i in range(Sall.secNum):
h1, = plot(Sall.S[i], Sall.V[i]*3.6, color="black", linewidth=1) #, label=u'速度曲线'
h2, = plot(Sall.S[i], [Sall.secLimit[i]*3.6]*len(Sall.S[i]), color="black", linewidth=1, linestyle="--")
ylim(0.0,100.0)
xlim(12100, 13600)
gca().invert_xaxis()
xlabel('公里标(m)')
ylabel('速度(m/s)')
h1._label = "速度曲线"
h2._label = "速度限制"
legend(loc='upper right')
savefig("S6.pdf", dpi=600)
show()
示例6: draw_bar
def draw_bar(means, density):
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
ind = np.arange(len(means)) # the x locations for the groups
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects = ax.bar(ind, means, width, color='g')
# add some text for labels, title and axes ticks
ax.set_ylabel('Milliseconds')
ax.set_title('Average running time on %s networks' % density)
ax.set_xticks(ind+width)
ax.set_xticklabels(('Ford-Fulkerson', 'Edmonds-Karp', 'Capacity scaling', 'Generic push relabel', 'Relabel to front'),
rotation=40, ha='right', fontsize=10)
def autolabel(rects):
# attach some text labels
for i, rect in enumerate(rects):
height = rect.get_height()
ax.text(rect.get_x()+rect.get_width()/2., height + 0.05, '%d' % means[i],
ha='center', va='bottom')
autolabel(rects)
plt.savefig(util.get_out_file('chart', '%s.png' % density))
示例7: myScatter
def myScatter(lst,xtxt="",ytxt="",f="out.pdf"):
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg \
import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import numpy
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
asnum = numpy.array
x,y = asnum([z[0] for z in lst]), \
asnum([z[1] for z in lst])
fig = Figure(figsize=(4,2))
canvas = FigureCanvas(fig)
ax = fig.add_subplot(111)
ax.set_xlabel(xtxt,fontsize=9)
ax.set_ylabel(ytxt,fontsize=9)
ax.grid(True,linestyle='-',color='0.75')
ax.set_ylim((-2,102))
cm = plt.cm.get_cmap('RdYlGn')
plt.ylim(-5,100)
ax.plot(x,y,marker='o', linestyle='--', color='r', label='Square')
ax.tick_params(axis='both', which='major', labelsize=9)
ax.tick_params(axis='both', which='minor', labelsize=9)
print(f)
canvas.print_figure(f,dpi=500)
示例8: plot_TS
def plot_TS(temp, psal, depth, lon, lat, svec, tvec, density, title, m, figname):
'''
Create the T-S diagram
'''
logger = logging.getLogger(__name__)
fig = plt.figure(figsize=(15, 15))
rcParams.update({'font.size': 18})
plt.scatter(psal, temp, s=5, c=depth, vmin=10., vmax=1000.,
edgecolor='None', cmap=plt.cm.plasma)
cbar = plt.colorbar(extend='max')
plt.xlabel('Salinity', fontsize=18)
plt.ylabel('Temperature\n($^{\circ}$C)', rotation=0, ha='right', fontsize=18)
cont = plt.contour(svec, tvec, density, levels=np.arange(22., 32., 1.),
colors='.65', linestyles='dashed', lineswidth=0.5)
plt.clabel(cont,inline=True, fmt='%1.1f')
plt.xlim(smin, smax)
plt.ylim(tmin, tmax)
cbar.set_label('Depth\n(m)', rotation=0, ha='left')
plt.grid(color="0.6")
# Add an inset showing the positions of the platform
inset=plt.axes([0.135, 0.625, 0.3, 0.35])
lon2plot, lat2plot = m(lon, lat)
m.drawmapboundary(color='w')
m.plot(lon2plot, lat2plot, 'ro', ms=2, markeredgecolor='r')
#m.drawcoastlines(linewidth=0.25)
m.drawlsmask(land_color='0.4', ocean_color='0.9', lakes=False)
plt.title(title, fontsize=20)
plt.savefig(figname, dpi=150)
# plt.show()
plt.close()
示例9: rcParams
def rcParams(self):
"""
Return rcParams dict for this theme.
Notes
-----
Subclasses should not need to override this method method as long as
self._rcParams is constructed properly.
rcParams are used during plotting. Sometimes the same theme can be
achieved by setting rcParams before plotting or a apply
after plotting. The choice of how to implement it is is a matter of
convenience in that case.
There are certain things can only be themed after plotting. There
may not be an rcParam to control the theme or the act of plotting
may cause an entity to come into existence before it can be themed.
"""
try:
rcParams = deepcopy(self._rcParams)
except NotImplementedError:
# deepcopy raises an error for objects that are drived from or
# composed of matplotlib.transform.TransformNode.
# Not desirable, but probably requires upstream fix.
# In particular, XKCD uses matplotlib.patheffects.withStrok
rcParams = copy(self._rcParams)
for th in self.themeables.values():
rcParams.update(th.rcParams)
return rcParams
示例10: config_plot
def config_plot(self, arg_list):
"""Configure global plot parameters"""
import matplotlib
from matplotlib import rcParams
# set rcParams
rcParams.update({
'figure.dpi': 100.,
'font.family': 'sans-serif',
'font.size': 16.,
'font.weight': 'book',
'legend.loc': 'best',
'lines.linewidth': 1.5,
'text.usetex': 'true',
'agg.path.chunksize': 10000,
})
# determine image dimensions (geometry)
self.width = 1200
self.height = 768
if arg_list.geometry:
try:
self.width, self.height = map(float,
arg_list.geometry.split('x', 1))
self.height = max(self.height, 500)
except (TypeError, ValueError) as e:
e.args = ('Cannot parse --geometry as WxH, e.g. 1200x600',)
raise
self.dpi = rcParams['figure.dpi']
self.xinch = self.width / self.dpi
self.yinch = self.height / self.dpi
rcParams['figure.figsize'] = (self.xinch, self.yinch)
return
示例11: setFigForm
def setFigForm():
"""set the rcparams to EmulateApJ columnwidth=245.26 pts """
fig_width_pt = 245.26 * 2
inches_per_pt = 1.0 / 72.27
golden_mean = (math.sqrt(5.0) - 1.0) / 2.0
fig_width = fig_width_pt * inches_per_pt
fig_height = fig_width * golden_mean
fig_size = [1.5 * fig_width, fig_height]
params = {
"backend": "ps",
"axes.labelsize": 12,
"text.fontsize": 12,
"legend.fontsize": 7,
"xtick.labelsize": 11,
"ytick.labelsize": 11,
"text.usetex": True,
"font.family": "serif",
"font.serif": "Times",
"image.aspect": "auto",
"figure.subplot.left": 0.1,
"figure.subplot.bottom": 0.1,
"figure.subplot.hspace": 0.25,
"figure.figsize": fig_size,
}
rcParams.update(params)
示例12: make_boxplot_temperature
def make_boxplot_temperature(caObj, name, modis_lvl2=False):
low_clouds = get_calipso_low_clouds(caObj)
high_clouds = get_calipso_high_clouds(caObj)
medium_clouds = get_calipso_medium_clouds(caObj)
temp_c = caObj.calipso.all_arrays['layer_top_temperature'][:,0] +273.15
if modis_lvl2:
temp_pps = caObj.modis.all_arrays['temperature']
else:
temp_pps = caObj.imager.all_arrays['ctth_temperature']
if modis_lvl2:
height_pps = caObj.modis.all_arrays['height']
else:
height_pps = caObj.imager.all_arrays['ctth_height']
thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.30,
caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0)
very_thin = np.logical_and(caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']<0.10,
caObj.calipso.all_arrays['feature_optical_depth_532_top_layer_5km']>0)
thin_top = np.logical_and(caObj.calipso.all_arrays['number_layers_found']>1, thin)
thin_1_lay = np.logical_and(caObj.calipso.all_arrays['number_layers_found']==1, thin)
use = np.logical_and(temp_pps >100,
caObj.calipso.all_arrays['layer_top_altitude'][:,0]>=0)
use = np.logical_and(height_pps <45000,use)
low = np.logical_and(low_clouds,use)
medium = np.logical_and(medium_clouds,use)
high = np.logical_and(high_clouds,use)
c_all = np.logical_or(high,np.logical_or(low,medium))
high_very_thin = np.logical_and(high, very_thin)
high_thin = np.logical_and(high, np.logical_and(~very_thin,thin))
high_thick = np.logical_and(high, ~thin)
#print "thin, thick high", np.sum(high_thin), np.sum(high_thick)
bias = temp_pps - temp_c
abias = np.abs(bias)
#abias[abias>2000]=2000
print name.ljust(30, " "), "%3.1f"%(np.mean(abias[c_all])), "%3.1f"%(np.mean(abias[low])),"%3.1f"%(np.mean(abias[medium])),"%3.1f"%(np.mean(abias[high]))
c_all = np.logical_or(np.logical_and(~very_thin,high),np.logical_or(low,medium))
number_of = np.sum(c_all)
#print name.ljust(30, " "), "%3.1f"%(np.sum(abias[c_all]<250)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<1500)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<2000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<3000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<4000)*100.0/number_of), "%3.1f"%(np.sum(abias[c_all]<5000)*100.0/number_of)
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
fig = plt.figure(figsize = (6,9))
ax = fig.add_subplot(111)
plt.xticks(rotation=70)
ax.fill_between(np.arange(0,8),-2.5,2.5, facecolor='green', alpha=0.6)
ax.fill_between(np.arange(0,8),-5,5, facecolor='green', alpha=0.4)
ax.fill_between(np.arange(0,8),-7.5,7.5, facecolor='green', alpha=0.2)
ax.fill_between(np.arange(0,8),10,150, facecolor='red', alpha=0.2)
ax.fill_between(np.arange(0,8),-20,-10, facecolor='red', alpha=0.2)
for y_val in [-5,-4,-3,-2,-1,1,2,3,4,5]:
plt.plot(np.arange(0,8), y_val*20 + 0*np.arange(0,8),':k', alpha=0.4)
plt.plot(np.arange(0,8), 0 + 0*np.arange(0,8),':k', alpha=0.4)
bplot = ax.boxplot([bias[low],bias[medium],bias[high],bias[high_thick],bias[high_thin],bias[high_very_thin]],whis=[5, 95],sym='',
labels=["low","medium","high-all","high-thick\n od>0.4","high-thin \n 0.1<od<0.4","high-vthin\n od<0.1"],showmeans=True, patch_artist=True)
ax.set_ylim(-20,100)
for box in bplot['boxes']:
box.set_facecolor('0.9')
plt.title(name)
plt.savefig(ADIR + "/PICTURES_FROM_PYTHON/CTTH_BOX/ctth_box_plot_temperature_%s_5_95_filt.png"%(name))
开发者ID:adybbroe,项目名称:atrain_match,代码行数:60,代码来源:plot_ctth_boxplots_mlvl2_temperature_pressure_height.py
示例13: __init__
def __init__(self, parent):
gui.MainFrame.__init__(self, parent)
self.summaryFiles = []
self.activeSummaryFiles = []
self.testedAssemblers = []
self.summaryParsers = []
self.summaryLabels = []
self.covData = {}
self.covDataKeys = []
self.covDataValues = []
self.plotIndex = 0
self.plotDir = ''
self.newEntry = ''
self.xAttribute = 'l'
self.yAttribute = 'cN50'
self.xUnits = 'bp'
self.yUnits = 'bp'
self.xScale = 'linear'
self.yScale = 'linear'
self.readFile = ''
self.referencePickerName = ''
self.contigPickerName = ''
self.deBrujinAssemblers = ['abyss','ray','soap','velvet']
self.deBrujin = ('ABySS assembler', 'SOAPdenovo2', 'Velvet', 'Ray assembler')
self.styles = []
rcParams.update({'figure.autolayout': True})
self.atributes = ['l', 'cov', 'N', 'd', 'e', 'r', 'R', 'X', 'A', 'D']
self.units = ['bp', 'coverage', 'num reads', '', '', '', '', '', '', '']
self.detailsDict = {'cTotalNum':'(number of contigs)', 'cBiggerThen':'(num. of contigs bigger then s)',
'cTotalLen' : '(total length of contigs)', 'cMaxLen' : '(maximum length of contigs)',
'cMinLen' : '(minimum length of contigs)', 'cAvgLen' : '(average length of contigs)',
'cMedLen' : '(median length of contigs)', 'cN50':'(N50 size of contigs)',
'cN25':'(N25 size of contigs)', 'cN75':'(N75 size of contigs)', 'cN56':'(N56 size of contigs)',
'sTotalNum':'(number of scaffolds)', 'sBiggerThen':'(num. of scaffolds bigger then s)',
'sTotalLen' : '(total length of scaffolds)','sMaxSize' : '(maximum length of scaff.)',
'sMinSize' : '(minimum length of scaff.','sAvgLen' : '(average length of scaff.)',
'sMedSize' : '(median length of scaff.)', 'sN50':'(N50 size of scaffolds)',
'sN25':'(N25 size of scaffolds)','sN56':'(N56 size of scaffolds)',
'sN75':'(N75 size of scaffolds)','sEM':'(ratio between median and E-size[scaff.])',
'sEN':'(ratio between n50 and E-size)','mAvgs':'(average length of scaff./average length of cont.)',
'mN50s':'(N50[contigs]/N50[scaffolds])','mNums':'([number of contigs]/[number of scaffolds])',
'mLens':'([total len. of cont.]/[total len. of scaff.])', 'mMaxs':'([max length of con.]/[max length of scaff.])',
'totalRealTime':'(total execution time of all steps of the assembly process)',
'totalCpuTime':'(total CPU time of all steps of the assembly process)',
'totalRSS':'(peak memory usage [Resident Set Size])',
'l':'(read length)',
}
self.atributes += ['totalRealTime', 'totalCpuTime', 'totalRSS', 'totalPSS', 'totalVmSize', 'cTotalNum', 'cBiggerThen', \
'cTotalLen', 'cMaxLen', 'cMinLen', 'cAvgLen', 'cMedLen', 'cESize', 'cN25', 'cN50', 'cN56', 'cN75', 'sTotalNum', \
'sMaxSize', 'sMinSize', 'sAvgSize', 'sMedSize', 'sCertainNum', 'sN25', 'sN50', 'sN56', 'sN75', 'sEM', 'sEN', 'sQual', 'mAvgs', 'mN50s', 'mNums', 'mLens', 'mMaxs','cReferenceCoverage']
self.units += ['sec', 'sec', 'MB', 'MB', 'MB', '', '', \
'bp', 'bp', 'bp', 'bp', 'bp', '', 'bp', 'bp', 'bp', 'bp', '', \
'bp', 'bp', 'bp', 'bp', '', 'bp', 'bp', 'bp', 'bp', '', '', \
'', '', '', '', '', '',''];
self.selectionMap = {0:'linear',1:'logarithmic'}
self.checkListBoxInitialItems = {"abyss":0,"minimus":1,"sga":2,"pasqual":3,"soap":4,"celera":5,"velvet":6,"readjoiner":7, "ray":8}
self.assemblerTypes = {}
print "[AN:] Basic viewer 1.0 started at: ", time.strftime("%H:%M:%S")
self.CreatePlot()
self.createReadsPlot()
示例14: temporal_analysis
def temporal_analysis():
words = ["sorto", u"ryssä", "nais", "torppar", u"työttömy", "nykyi", "histor", "jumala", "kirkko", "jeesus", u"marx", u"sosialis", u"porwari", u"työ", u"työttömyy", u"työläi", u"työvä", u"kapitalis", u"taantu", u"taistel", u"toveri", u"vallankumou", "torppari", "agitaattori", u"köyhälistö", u"kärsi", "orja", "sort", "sosialidemokraatti", "lakko", "vapau", "voitto"]
ts, soc_freqs, other_freqs = frequency_over_time(words)
print 100000 * soc_freqs
print 100000 * other_freqs
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
for i, word in enumerate(words):
plt.figure(1)
plt.clf()
plt.plot(ts[:-1], soc_freqs[:,i], '-x')
plt.plot(ts[:-1], other_freqs[:,i], '-o')
max_y = max(np.max(soc_freqs[:,i]), np.max(other_freqs[:,i]))
plt.ylim((0, max_y*1.05))
plt.xlabel('Year')
plt.ylabel('Frequency')
plt.title(word)
plt.legend(['Socialist', 'Others'], loc='best')
plt.savefig('../plots/%s.png' % word)
date_str = re.sub(" ", "T", str(dt.datetime.now()))[:-7]
date_str = re.sub(":", "", date_str)
pickle.dump((ts,soc_freqs,other_freqs,words), open('../plot_data/%s.pckl' % date_str, 'wb'))
save_csv2(words, soc_freqs, ts, "socialist")
save_csv2(words, other_freqs, ts, "others")
save_csv(words, soc_freqs, "socialist")
save_csv(words, other_freqs, "others")
示例15: pdf
def pdf(params={}, presentation='powerpoint'):
if presentation == 'powerpoint':
fontsize = 14
figsize = (10,7.5)
subplot_left = 0.15
subplot_right = 0.85
subplot_top = 0.8
subplot_bottom = 0.15
if presentation == 'paper':
fontsize = 8
figsize = (8,8)
subplot_left = 0.2
subplot_right = 0.8
subplot_top = 0.8
subplot_bottom = 0.2
print 'Loading rcparams for saving to PDF'
print 'NOTE: ipython plotting may not work as expected with these parameters loaded!'
default_params = {'backend': 'Agg',
'ps.usedistiller': 'xpdf',
'ps.fonttype' : 3,
'pdf.fonttype' : 3,
'font.family' : 'sans-serif',
'font.serif' : 'Times, Palatino, New Century Schoolbook, Bookman, Computer Modern Roman',
'font.sans-serif' : 'Helvetica, Avant Garde, Computer Modern Sans serif',
'font.cursive' : 'Zapf Chancery',
'font.monospace' : 'Courier, Computer Modern Typewriter',
'font.size' : fontsize,
'text.fontsize': fontsize,
'axes.labelsize': fontsize,
'axes.linewidth': 1.0,
'xtick.major.linewidth': 1,
'xtick.minor.linewidth': 1,
#'xtick.major.size': 6,
#'xtick.minor.size' : 3,
'xtick.labelsize': fontsize,
#'ytick.major.size': 6,
#'ytick.minor.size' : 3,
'ytick.labelsize': fontsize,
'figure.figsize': figsize,
'figure.dpi' : 72,
'figure.facecolor' : 'white',
'figure.edgecolor' : 'white',
'savefig.dpi' : 300,
'savefig.facecolor' : 'white',
'savefig.edgecolor' : 'white',
'figure.subplot.left': subplot_left,
'figure.subplot.right': subplot_right,
'figure.subplot.bottom': subplot_bottom,
'figure.subplot.top': subplot_top,
'figure.subplot.wspace': 0.2,
'figure.subplot.hspace': 0.2,
'lines.linewidth': 1.0,
'text.usetex': True,
}
for key, val in params.items():
default_params[key] = val
rcParams.update(default_params)